Suppr超能文献

基于时空编码 MRI 的高分辨率容积弥散图加速采集的同时多带多回波相位编码。

Simultaneous multi-banding and multi-echo phase encoding for the accelerated acquisition of high-resolution volumetric diffusivity maps by spatiotemporally encoded MRI.

机构信息

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; College of Electronic Science and Technology, Xiamen University, Xiamen, China.

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Magn Reson Imaging. 2021 Jun;79:130-139. doi: 10.1016/j.mri.2021.03.010. Epub 2021 Mar 17.

Abstract

PURPOSE

Spatiotemporal Encoding (SPEN) is an ultrafast imaging technique where the low-bandwidth axis is rasterized in a joint spatial/k-domain. SPEN benefits from increased robustness to field inhomogeneities, folding-free reconstruction of subsampled data, and an ability to combine multiple interleaved or signal averaged scans -yet its relatively high SAR complicates volumetric uses. Here we show how this can be alleviated by merging simultaneous multi-band excitation, with intra-slab multi-echo (ME) phase encoding, for the acquisition of high definition volumetric DWI/DTI data.

METHODS

A protocol involving phase-cycling of simultaneous multi-banded z-slab excitations in independently k-interleaved scans, together with ME trains that k-encoded positions within these slabs, was implemented. A reconstruction incorporating a CAIPIRINHA-like encoding of the multiple bands and exploiting SPEN's ability to deliver self-referenced, per-shot phase maps, then led to high-definition diffusivity acquisitions, with reduced SAR and acquisition times vis-à-vis non-optimized 3D counterparts.

RESULTS

The new protocol was used to collect full brain 3 T DTI experiments at a variety of nominal voxel sizes, ranging from 1.95 to 2.54 mm. In general, the new protocol yielded superior sensitivity and fewer distortions than what could be observed in comparably timed phase-encoded 3D SPEN, multi-slice 2D SPEN, or optimized EPI counterparts.

CONCLUSIONS

A robust procedure for acquiring volumetric DWI/DTI data was developed and demonstrated.

摘要

目的

时空编码(SPEN)是一种超快速成像技术,其中低带宽轴在联合空间/k 域中进行光栅化。SPEN 受益于对场不均匀性的增强稳健性、对欠采样数据的无折叠重建以及能够结合多个交错或信号平均扫描的能力——尽管其相对较高的 SAR 使容积使用复杂化。在这里,我们展示了如何通过合并同时多频带激发,与腔内多回波(ME)相位编码,来获取高清晰度容积 DWI/DTI 数据。

方法

在独立 k 交错扫描中,涉及同时多带 z 切片激发的相位循环,以及在这些切片内对 k 编码位置的 ME 序列,实现了一种协议。一种包含多个波段的 CAIPIRINHA 样编码的重建,并利用 SPEN 提供的自我参考、每拍相位图的能力,然后导致高清晰度扩散采集,与非优化的 3D 对应物相比,降低了 SAR 和采集时间。

结果

该新协议用于在各种标称体素大小下收集全脑 3T DTI 实验,范围从 1.95 到 2.54mm。一般来说,新协议产生的灵敏度优于在可比定时相位编码 3D SPEN、多切片 2D SPEN 或优化 EPI 对应物中观察到的灵敏度,并且失真更少。

结论

开发并演示了一种用于获取容积 DWI/DTI 数据的稳健程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验