Mandava Sagar, Keerthivasan Mahesh B, Martin Diego R, Altbach Maria I, Bilgin Ali
Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, United States of America.
Department of Medical Imaging, University of Arizona, Tucson, Arizona, United States of America.
Phys Med Biol. 2021 Feb 11;66(4):04NT03. doi: 10.1088/1361-6560/abd4b8.
Subspace-constrained reconstruction methods restrict the relaxation signals (of size M) in the scene to a pre-determined subspace (of size K≪M) and allow multi-contrast imaging and parameter mapping from accelerated acquisitions. However, these constraints yield poor image quality at some imaging contrasts, which can impact the parameter mapping performance. Additional regularization such as the use of joint-sparse (JS) or locally-low-rank (LLR) constraints can help improve the recovery of these images but are not sufficient when operating at high acceleration rates. We propose a method, non-local rank 3D (NLR3D), that is built on block matching and transform domain low rank constraints to allow high quality recovery of subspace-coefficient images (SCI) and subsequent multi-contrast imaging and parameter mapping. The performance of NLR3D was evaluated using Monte-Carlo (MC) simulations and compared against the JS and LLR methods. In vivo T mapping results are presented on brain and knee datasets. MC results demonstrate improved bias, variance, and MSE behavior in both the multi-contrast images and parameter maps when compared to the JS and LLR methods. In vivo brain and knee results at moderate and high acceleration rates demonstrate improved recovery of high SNR early TE images as well as parameter maps. No significant difference was found in the T2 values measured in ROIs between the NLR3D reconstructions and the reference images (Wilcoxon signed rank test). The proposed method, NLR3D, enables recovery of high-quality SCI and, consequently, the associated multi-contrast images and parameter maps.
子空间约束重建方法将场景中的弛豫信号(大小为M)限制在一个预先确定的子空间(大小为K≪M)中,并允许从加速采集进行多对比度成像和参数映射。然而,这些约束在某些成像对比度下会产生较差的图像质量,这可能会影响参数映射性能。额外的正则化,如使用联合稀疏(JS)或局部低秩(LLR)约束,有助于改善这些图像的恢复,但在高加速率下运行时并不足够。我们提出了一种非局部秩3D(NLR3D)方法,该方法基于块匹配和变换域低秩约束,以实现子空间系数图像(SCI)的高质量恢复以及随后的多对比度成像和参数映射。使用蒙特卡罗(MC)模拟评估了NLR3D的性能,并与JS和LLR方法进行了比较。展示了大脑和膝盖数据集的体内T映射结果。MC结果表明,与JS和LLR方法相比,多对比度图像和参数图中的偏差、方差和均方误差行为均有所改善。在中等和高加速率下的体内大脑和膝盖结果表明,高SNR早期TE图像以及参数图的恢复得到了改善。在NLR3D重建图像与参考图像之间的感兴趣区域中测量的T2值没有发现显著差异(Wilcoxon符号秩检验)。所提出的NLR3D方法能够恢复高质量的SCI,从而恢复相关的多对比度图像和参数图。