Kaufmann Sebastian, Latzel Richard, Beneke Ralph, Hoos Olaf
Center for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-University Wuerzburg, Wuerzburg,Germany.
Faculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf,Germany.
Int J Sports Physiol Perform. 2022 Oct 10;17(11):1642-1648. doi: 10.1123/ijspp.2022-0115. Print 2022 Nov 1.
To assess the test-retest reliability of the continuous (PCr-LA-O2) and intermittent (PCr-LA-O2int) version of the 3-component model of energy distribution in an applied setting.
Sixteen male handball players (age 23 [3] y, height 185 [7] cm, weight 85 [14] kg) completed the 30-15 Intermittent Fitness Test (30-15IFT) twice. Performance was assessed by peak speed (speed of the last successfully completed stage of the 30-15IFT [VIFT], in kilometers per hour) and time to exhaustion (in seconds). Oxygen uptake (in milliliters per kilogram per minute) and blood lactate concentrations (in millimoles per liter) were obtained before, during, and until 15 minutes after exercise. Total metabolic energy (in joules per kilogram), total metabolic power (in watts per kilogram), and energy shares (in joules per kilogram and percentage) of the aerobic (energy contribution of the aerobic system [WAERint]), anaerobic lactic, and anaerobic alactic (anaerobic alactic energy [WPCrint]) systems were calculated using both model versions, respectively.
Test-retest reliability was very good for VIFT (limits of agreement [LoA]: -1.13 to 0.63 km·h-1, coefficient of variation [CV%] 1.68), time to exhaustion (LoA: -101 to 38 s, CV% 2.92), peak oxygen uptake (LoA: -2.68 to 4.04 mL·min-1·kg-1, CV% 1.48), and peak heart rate (-6.9 to 7.7 beats·min-1, CV% 1.1), but moderate for change in blood lactate concentration (LoA: -3.84 to 4.07 mmol·L-1, CV% 11.43). Reliability of the modeled total energy and its fractions were high for total metabolic energy (LoA: -1489 to 1177 J·kg-1, CV% 2.88), total metabolic power (LoA: -2.0 to 1.9 W·kg-1, CV% 3.58), contribution of aerobic (LoA: -1673 to 1283 J·kg-1, CV% 3.62), WAERint (LoA: -1760 to 2160 J·kg-1, CV% 6.04), and moderate for anaerobic alactic (LoA: -368 to 439 J·kg-1, CV% 14.85), WPCrint (LoA: -1707 to 988 J·kg-1, CV% 9.98), and energy share of anaerobic lactic concentration (LoA: -229 to 235 J·kg-1, CV% 11.43).
Considering the inherent fluctuations of the underlying energetics, the reliabilities of both versions of the 3-component model of energy distribution are acceptable for applied settings.
在实际应用环境中评估能量分布三分模型的连续版(PCr-LA-O2)和间歇版(PCr-LA-O2int)的重测信度。
16名男性手球运动员(年龄23[3]岁,身高185[7]厘米,体重85[14]千克)完成两次30-15间歇体能测试(30-15IFT)。通过峰值速度(30-15IFT最后成功完成阶段的速度[VIFT],单位为千米每小时)和疲劳时间(单位为秒)评估表现。在运动前、运动期间及运动后15分钟内获取摄氧量(单位为毫升每千克每分钟)和血乳酸浓度(单位为毫摩尔每升)。分别使用两个模型版本计算总代谢能量(单位为焦耳每千克)、总代谢功率(单位为瓦特每千克)以及有氧(有氧系统的能量贡献[WAERint])、无氧乳酸和无氧非乳酸(无氧非乳酸能量[WPCrint])系统的能量份额(单位为焦耳每千克和百分比)。
VIFT的重测信度非常好(一致性界限[LoA]:-1.13至0.63千米·小时-1,变异系数[CV%]1.68),疲劳时间(LoA:-101至38秒,CV%2.92)、峰值摄氧量(LoA:-2.68至4.04毫升·分钟-1·千克-1,CV%1.48)和峰值心率(-6.9至7.7次·分钟-1,CV%1.1)的重测信度也非常好,但血乳酸浓度变化的重测信度为中等(LoA:-3.84至4.07毫摩尔·升-1,CV%11.43)。建模的总能量及其各部分的信度较高,总代谢能量(LoA:-1489至1177焦耳·千克-1,CV%2.88)、总代谢功率(LoA:-2.0至1.9瓦特·千克-1,CV%3.58)、有氧贡献(LoA:-1673至1283焦耳·千克-1,CV%3.62)、WAERint(LoA:-1760至2160焦耳·千克-1,CV%6.04),无氧非乳酸(LoA:-368至439焦耳·千克-1,CV%14.85)、WPCrint(LoA:-1707至988焦耳·千克-1,CV%9.98)和无氧乳酸浓度的能量份额(LoA:-229至235焦耳·千克-1,CV%11.43)的重测信度为中等。
考虑到基础能量学的固有波动,能量分布三分模型两个版本的信度在实际应用环境中是可接受的。