Suppr超能文献

利用生理边界和手动V̇O₂输入增强运动后氧动力学建模:一种新方法。

Enhancing Post-Exercise Oxygen Kinetics Modeling With Physiological Bounds and Manual V̇O_ Input: A Novel Approach.

作者信息

Ulupınar Süleyman, İnce İzzet, Gençoğlu Cebrail, Özbay Serhat, Çabuk Salih

机构信息

Faculty of Sports Sciences, Erzurum Technical University, Erzurum, Türkiye.

Faculty of Sports Sciences, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.

出版信息

Eur J Sport Sci. 2025 May;25(5):e12306. doi: 10.1002/ejsc.12306.

Abstract

This study addresses a critical limitation in existing computational tools for modeling post-exercise oxygen consumption kinetics (V̇O). Although exponential modeling provides practical insights into recovery dynamics, the inability to incorporate an individual's pre-exercise baseline oxygen consumption value (V̇O_) can lead to inaccurate interpretations. A user-defined baseline allows for more precise modeling by aligning recovery kinetics with the true physiological endpoint, representing the individual's actual recovery target after a sufficient rest. To overcome this limitation, this study employs a customized Python algorithm that incorporates user-defined baseline V̇O and uses both mono-exponential and bi-exponential models, aiming to improve upon existing analytical methods. Twenty-two male amateur soccer players participated in this study and performed a 30-s Wingate test. V̇O was measured continuously before, during, and after exercise via a metabolic gas analyzer. Both mono-exponential and bi-exponential models were used to analyze post-exercise V̇O kinetics. The analysis was performed using Origin software (as the reference tool), GedaeLab (a specialized web-based platform), and a custom-developed Python algorithm. The bi-exponential model demonstrated superior fit compared to the mono-exponential model with higher determination coefficient (R) values. Specifically, R values were 0.963 ± 0.013 and 0.805 ± 0.078 for the bi-exponential and mono-exponential models, respectively. The bi-exponential model also provided a more accurate approximation of real post-exercise oxygen consumption integrals at both 5 min and 15 min. Additionally, variations in V̇O values had different impacts on key parameters in both models, showing that higher V̇O values generally improved the model fit in the mono-exponential model but had minimal impact on the bi-exponential model.

摘要

本研究解决了现有用于模拟运动后耗氧动力学(V̇O)的计算工具中的一个关键局限性。尽管指数模型为恢复动态提供了实际见解,但无法纳入个体运动前的基线耗氧值(V̇O_)可能导致解释不准确。用户定义的基线通过将恢复动力学与真实的生理终点对齐,允许进行更精确的建模,该生理终点代表个体在充分休息后的实际恢复目标。为了克服这一局限性,本研究采用了一种定制的Python算法,该算法纳入了用户定义的基线V̇O,并使用单指数和双指数模型,旨在改进现有的分析方法。22名男性业余足球运动员参与了本研究,并进行了30秒的温盖特测试。通过代谢气体分析仪在运动前、运动中和运动后连续测量V̇O。单指数和双指数模型均用于分析运动后V̇O动力学。使用Origin软件(作为参考工具)、GedaeLab(一个专门的基于网络的平台)和定制开发的Python算法进行分析。与单指数模型相比,双指数模型显示出更好的拟合度,具有更高的决定系数(R)值。具体而言,双指数模型和单指数模型的R值分别为0.963±0.013和0.805±0.078。双指数模型在5分钟和15分钟时也提供了对实际运动后耗氧积分更准确的近似。此外,V̇O值的变化对两个模型中的关键参数有不同的影响,表明较高的V̇O值通常会改善单指数模型中的模型拟合,但对双指数模型的影响最小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13ef/12013733/6e8c14743630/EJSC-25-e12306-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验