Gugler Stefan, Reiher Markus
Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
J Chem Theory Comput. 2022 Nov 8;18(11):6670-6689. doi: 10.1021/acs.jctc.2c00718. Epub 2022 Oct 11.
In this work, we explore the quantum chemical foundations of descriptors for molecular similarity. Such descriptors are key for traversing chemical compound space with machine learning. Our focus is on the Coulomb matrix and on the smooth overlap of atomic positions (SOAP). We adopt a basic framework that allows us to connect both descriptors to electronic structure theory. This framework enables us to then define two new descriptors that are more closely related to electronic structure theory, which we call Coulomb lists and smooth overlap of electron densities (SOED). By investigating their usefulness as molecular similarity descriptors, we gain new insights into how and why Coulomb matrix and SOAP work. Moreover, Coulomb lists avoid the somewhat mysterious diagonalization step of the Coulomb matrix and might provide a direct means to extract subsystem information that can be compared across Born-Oppenheimer surfaces of varying dimension. For the electron density, we derive the necessary formalism to create the SOED measure in close analogy to SOAP. Because this formalism is more involved than that of SOAP, we review the essential theory as well as introduce a set of approximations that eventually allow us to work with SOED in terms of the same implementation available for the evaluation of SOAP. We focus our analysis on elementary reaction steps, where transition state structures are more similar to either reactant or product structures than the latter two are with respect to one another. The prediction of electronic energies of transition state structures can, however, be more difficult than that of stable intermediates due to multi-configurational effects. The question arises to what extent molecular similarity descriptors rooted in electronic structure theory can resolve these intricate effects.
在这项工作中,我们探索了分子相似性描述符的量子化学基础。此类描述符是利用机器学习遍历化合物空间的关键。我们的重点是库仑矩阵和平滑原子位置重叠(SOAP)。我们采用了一个基本框架,使我们能够将这两种描述符与电子结构理论联系起来。这个框架使我们能够定义两个与电子结构理论联系更紧密的新描述符,我们称之为库仑列表和电子密度平滑重叠(SOED)。通过研究它们作为分子相似性描述符的有用性,我们对库仑矩阵和SOAP的工作方式及原因有了新的认识。此外,库仑列表避免了库仑矩阵有点神秘的对角化步骤,并且可能提供一种直接方法来提取可以在不同维度的玻恩 - 奥本海默表面之间进行比较的子系统信息。对于电子密度,我们推导了类似于SOAP来创建SOED度量的必要形式。由于这种形式比SOAP的更复杂,我们回顾了基本理论,并引入了一组近似,最终使我们能够以与评估SOAP相同的实现方式来处理SOED。我们将分析重点放在基元反应步骤上,在这些步骤中,过渡态结构与反应物或产物结构的相似性比反应物和产物结构彼此之间的相似性更高。然而,由于多组态效应,过渡态结构电子能量的预测可能比稳定中间体的预测更困难。基于电子结构理论的分子相似性描述符在多大程度上能够解决这些复杂效应的问题由此产生。