Suppr超能文献

终身机器学习潜力。

Lifelong Machine Learning Potentials.

机构信息

ETH Zürich, Departement Chemie und Angewandte Biowissenschaften, 8093 Zürich, Switzerland.

出版信息

J Chem Theory Comput. 2023 Jun 27;19(12):3509-3525. doi: 10.1021/acs.jctc.3c00279. Epub 2023 Jun 8.

Abstract

Machine learning potentials (MLPs) trained on accurate quantum chemical data can retain the high accuracy, while inflicting little computational demands. On the downside, they need to be trained for each individual system. In recent years, a vast number of MLPs have been trained from scratch because learning additional data typically requires retraining on all data to not forget previously acquired knowledge. Additionally, most common structural descriptors of MLPs cannot represent efficiently a large number of different chemical elements. In this work, we tackle these problems by introducing element-embracing atom-centered symmetry functions (eeACSFs), which combine structural properties and element information from the periodic table. These eeACSFs are key for our development of a lifelong machine learning potential (lMLP). Uncertainty quantification can be exploited to transgress a fixed, pretrained MLP to arrive at a continuously adapting lMLP, because a predefined level of accuracy can be ensured. To extend the applicability of an lMLP to new systems, we apply continual learning strategies to enable autonomous and on-the-fly training on a continuous stream of new data. For the training of deep neural networks, we propose the continual resilient (CoRe) optimizer and incremental learning strategies relying on rehearsal of data, regularization of parameters, and the architecture of the model.

摘要

基于准确量子化学数据训练的机器学习势能(MLPs)可以保留高精度,同时只需要很少的计算需求。缺点是,它们需要针对每个单独的系统进行训练。近年来,由于学习额外的数据通常需要对所有数据进行重新训练,以防止忘记之前获得的知识,因此大量的 MLP 都是从头开始训练的。此外,MLP 中最常见的结构描述符不能有效地表示大量不同的化学元素。在这项工作中,我们通过引入包含元素的原子中心对称函数(eeACSFs)来解决这些问题,这些函数结合了来自元素周期表的结构特性和元素信息。这些 eeACSFs 是我们开发终身机器学习势能(lMLP)的关键。不确定性量化可用于将固定的、预先训练的 MLP 转移到连续自适应的 lMLP,因为可以确保达到预定的精度水平。为了将 lMLP 的适用性扩展到新系统,我们应用连续学习策略,以实现对新数据流的自主和实时训练。对于深度神经网络的训练,我们提出了连续弹性(CoRe)优化器和增量学习策略,依赖于数据的排练、参数的正则化以及模型的架构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b205/10308836/6d2f803015b9/ct3c00279_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验