Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Harvard Medical School, Boston, MA, USA.
Nat Commun. 2022 Oct 12;13(1):6017. doi: 10.1038/s41467-022-33546-9.
Cryopreservation by vitrification has far-reaching implications. However, rewarming techniques that are rapid and scalable (both in throughput and biosystem size) for low concentrations of cryoprotective agent (CPA) for reduced toxicity are lacking, limiting the potential for translation. Here, we introduce a joule heating-based platform technology, whereby biosystems are rapidly rewarmed by contact with an electrical conductor that is fed a voltage pulse. We demonstrate successful cryopreservation of three model biosystems with thicknesses across three orders of magnitude, including adherent cells (4 µm), Drosophila melanogaster embryos (50 µm) and rat kidney slices (~1.2 mm) using low CPA concentrations (2-4 M). Using tunable voltage pulse widths from 10 µs to 100 ms, numerical simulation predicts that warming rates from 5 × 10 to 6 × 10 °C/min can be achieved. Altogether, our results present a general solution to the cryopreservation of a broad spectrum of cellular, organismal and tissue-based biosystems.
玻璃化冷冻保存具有深远的意义。然而,对于低浓度的细胞保护剂(CPA),缺乏快速且可扩展的复温技术(无论是在通量还是生物系统大小方面)以降低毒性,这限制了其转化的潜力。在这里,我们引入了一种焦耳加热为基础的平台技术,通过与导电体接触来快速复温,该导电体输入电压脉冲。我们成功地用低浓度的 CPA(2-4M)冷冻保存了三种模型生物系统,其厚度跨越了三个数量级,包括贴壁细胞(约 4μm)、黑腹果蝇胚胎(约 50μm)和大鼠肾切片(约 1.2mm)。通过可调的电压脉冲宽度从 10μs 到 100ms,数值模拟预测可以实现 5×10 到 6×10°C/min 的升温速率。总的来说,我们的结果为广泛的细胞、生物和组织生物系统的冷冻保存提供了一种通用的解决方案。