Materials and Nanoresearch Unit, Department of Industrial Chemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria.
Biorefinery and Process Automation Engineering Center, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.
Sci Rep. 2022 Oct 12;12(1):17054. doi: 10.1038/s41598-022-21266-5.
Improper discharge of waste dry cell batteries and untreated antibiotics laden effluents to the environment pose serious threat to the sustenance of the ecosystem. In this study, synthesis of reduced graphene oxide-ZnO (rGO-ZnO) nanocomposite was achieved via a bioreduction process using waste dry cell battery rod as graphene oxide (GO) precursor. The nanocomposite was applied in the ultraviolet photocatalytic degradation of chloramphenicol (CAP) at 290 nm in the presence of hydrogen peroxide. RGO-ZnO nanocomposite was characterized by SEM, TEM, XRD, BET and FTIR. TEM image of the nanocomposite revealed a polydispersed, quasi-spherical zinc oxide on a coarse reduced graphene oxide surface. XRD patterns showed sharp, prominent crystalline wurtzite hexagonal phases of ZnO and rGO. BET surface area of the nanocomposite was 722 m/g with pore size of 2 nm and pore volume of 0.4 cc/g. % photo-removal efficiency increased with increasing irradiation time but diminished at higher pH, temperature and CAP concentration. Photocatalytic adsorption process fitted more accurately into the Freundlich model (R = 0.99) indicating a multilayer adsorption mechanism. 92.74% reduction in chemical oxygen demand (COD) level of veterinary effluent was obtained after treatment with the nanocomposite thus affirming its effectiveness in real waste water samples.
废干电池电池和未经处理的含抗生素废水的不当排放对生态系统的维持构成了严重威胁。在本研究中,通过使用废干电池棒作为氧化石墨烯(GO)前体的生物还原过程实现了还原氧化石墨烯-ZnO(rGO-ZnO)纳米复合材料的合成。该纳米复合材料应用于在 290nm 下存在过氧化氢时对氯霉素(CAP)的紫外光催化降解。通过 SEM、TEM、XRD、BET 和 FTIR 对 rGO-ZnO 纳米复合材料进行了表征。纳米复合材料的 TEM 图像显示,在粗糙的还原氧化石墨烯表面上存在多分散的准球形氧化锌。XRD 图谱显示出尖锐的、突出的 ZnO 和 rGO 的六方纤锌矿晶相。纳米复合材料的 BET 表面积为 722m/g,孔径为 2nm,孔体积为 0.4cc/g。随着辐照时间的增加,光去除效率增加,但在较高的 pH 值、温度和 CAP 浓度下,光去除效率降低。光催化吸附过程更准确地符合 Freundlich 模型(R=0.99),表明存在多层吸附机制。在用纳米复合材料处理后,兽医废水的化学需氧量(COD)水平降低了 92.74%,这证实了其在实际废水样品中的有效性。