Medical Image Research Center, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Farabi Eye Hospital, Tehran University of Medical Sciences, Qazvin Sq, Tehran, 13138, Iran.
Sci Rep. 2022 Oct 12;12(1):17109. doi: 10.1038/s41598-022-22135-x.
This work aims at determining the ability of a deep learning (DL) algorithm to measure retinal nerve fiber layer (RNFL) thickness from optical coherence tomography (OCT) scans in anterior ischemic optic neuropathy (NAION) and demyelinating optic neuritis (ON). The training/validation dataset included 750 RNFL OCT B-scans. Performance of our algorithm was evaluated on 194 OCT B-scans from 70 healthy eyes, 82 scans from 28 NAION eyes, and 84 scans of 29 ON eyes. Results were compared to manual segmentation as a ground-truth and to RNFL calculations from the built-in instrument software. The Dice coefficient for the test images was 0.87. The mean average RNFL thickness using our U-Net was not different from the manually segmented best estimate and OCT machine data in control and ON eyes. In NAION eyes, while the mean average RNFL thickness using our U-Net algorithm was not different from the manual segmented value, the OCT machine data were different from the manual segmented values. In NAION eyes, the MAE of the average RNFL thickness was 1.18 ± 0.69 μm and 6.65 ± 5.37 μm in the U-Net algorithm segmentation and the conventional OCT machine data, respectively (P = 0.0001).
本研究旨在评估深度学习(DL)算法从光学相干断层扫描(OCT)图像中测量前部缺血性视神经病变(NAION)和脱髓鞘性视神经炎(ON)患者视网膜神经纤维层(RNFL)厚度的能力。训练/验证数据集包括 750 份 RNFL OCT B 扫描。我们的算法在 70 只健康眼的 194 份 OCT B 扫描、28 只 NAION 眼的 82 份扫描和 29 只 ON 眼的 84 份扫描上进行了评估。结果与手动分割作为金标准以及内置仪器软件的 RNFL 计算进行了比较。测试图像的 Dice 系数为 0.87。使用我们的 U-Net 计算的平均 RNFL 厚度与手动分割的最佳估计值以及在对照组和 ON 眼中的 OCT 机器数据无差异。在 NAION 眼中,虽然使用我们的 U-Net 算法计算的平均 RNFL 厚度与手动分割值无差异,但 OCT 机器数据与手动分割值不同。在 NAION 眼中,平均 RNFL 厚度的 MAE 在 U-Net 算法分割和传统 OCT 机器数据中分别为 1.18±0.69μm 和 6.65±5.37μm(P=0.0001)。