Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
Transl Vis Sci Technol. 2021 Jul 1;10(8):21. doi: 10.1167/tvst.10.8.21.
To design a robust and automated estimation method for measuring the retinal nerve fiber layer (RNFL) thickness using spectral domain optical coherence tomography (SD-OCT).
We developed a deep learning-based image segmentation network for automated segmentation of the RNFL in SD-OCT B-scans of mouse eyes. In total, 5500 SD-OCT B-scans (5200 B-scans were used as training data with the remaining 300 B-scans used as testing data) were used to develop this segmentation network. Postprocessing operations were then applied on the segmentation results to fill any discontinuities or remove any speckles in the RNFL. Subsequently, a three-dimensional retina thickness map was generated by z-stacking 100 segmentation processed thickness B-scan images together. Finally, the average absolute difference between algorithm predicted RNFL thickness compared to the ground truth manual human segmentation was calculated.
The proposed method achieves an average dice similarity coefficient of 0.929 in the SD-OCT segmentation task and an average absolute difference of 0.0009 mm in thickness estimation task on the basis of the testing dataset. We also evaluated our segmentation algorithm on another biological dataset with SD-OCT volumes for RNFL thickness after the optic nerve crush injury. Results were shown to be comparable between the predicted and manually measured retina thickness values.
Experimental results demonstrate that our automated segmentation algorithm reliably predicts the RNFL thickness in SD-OCT volumes of mouse eyes compared to laborious and more subjective manual SD-OCT RNFL segmentation.
Automated segmentation using a deep learning-based algorithm for murine eye OCT effectively and rapidly produced nerve fiber layer thicknesses comparable to manual segmentation.
设计一种稳健且自动化的方法,使用谱域光相干断层扫描(SD-OCT)测量视网膜神经纤维层(RNFL)厚度。
我们开发了一种基于深度学习的图像分割网络,用于自动分割小鼠眼 SD-OCT B 扫描中的 RNFL。总共使用了 5500 个 SD-OCT B 扫描(5200 个 B 扫描用于训练数据,其余 300 个 B 扫描用于测试数据)来开发这个分割网络。然后对分割结果应用后处理操作,以填充 RNFL 中的任何不连续或去除任何斑点。随后,通过将 100 个经过分割处理的厚度 B 扫描图像叠加在一起生成三维视网膜厚度图。最后,计算算法预测的 RNFL 厚度与手动分割的地面实况之间的平均绝对差异。
基于测试数据集,所提出的方法在 SD-OCT 分割任务中实现了平均骰子相似系数为 0.929,在厚度估计任务中实现了平均绝对差异为 0.0009mm。我们还在另一个具有视神经挤压损伤后 RNFL 厚度的 SD-OCT 体积的生物数据集上评估了我们的分割算法。结果表明,预测和手动测量的视网膜厚度值之间具有可比性。
实验结果表明,与费力且更主观的手动 SD-OCT RNFL 分割相比,我们的自动分割算法能够可靠地预测小鼠眼 SD-OCT 体积中的 RNFL 厚度。
王燕