Devalla Sripad Krishna, Pham Tan Hung, Panda Satish Kumar, Zhang Liang, Subramanian Giridhar, Swaminathan Anirudh, Yun Chin Zhi, Rajan Mohan, Mohan Sujatha, Krishnadas Ramaswami, Senthil Vijayalakshmi, De Leon John Mark S, Tun Tin A, Cheng Ching-Yu, Schmetterer Leopold, Perera Shamira, Aung Tin, Thiéry Alexandre H, Girard Michaël J A
Ophthalmic Engineering & Innovation Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore.
Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
Biomed Opt Express. 2020 Oct 15;11(11):6356-6378. doi: 10.1364/BOE.395934. eCollection 2020 Nov 1.
Recently proposed deep learning (DL) algorithms for the segmentation of optical coherence tomography (OCT) images to quantify the morphological changes to the optic nerve head (ONH) tissues during glaucoma have limited clinical adoption due to their device specific nature and the difficulty in preparing manual segmentations (training data). We propose a DL-based 3D segmentation framework that is easily translatable across OCT devices in a label-free manner (i.e. without the need to manually re-segment data for each device). Specifically, we developed 2 sets of DL networks: the 'enhancer' (enhance OCT image quality and harmonize image characteristics from 3 devices) and the 'ONH-Net' (3D segmentation of 6 ONH tissues). We found that only when the 'enhancer' was used to preprocess the OCT images, the 'ONH-Net' trained on any of the 3 devices successfully segmented ONH tissues from the other two unseen devices with high performance (Dice coefficients > 0.92). We demonstrate that is possible to automatically segment OCT images from new devices without ever needing manual segmentation data from them.
最近提出的用于分割光学相干断层扫描(OCT)图像以量化青光眼期间视神经乳头(ONH)组织形态变化的深度学习(DL)算法,由于其特定于设备的性质以及制备手动分割(训练数据)的困难,在临床上的应用有限。我们提出了一种基于深度学习的3D分割框架,该框架可以以无标记的方式轻松地在不同的OCT设备之间转换(即无需为每个设备手动重新分割数据)。具体来说,我们开发了两组深度学习网络:“增强器”(提高OCT图像质量并协调来自3种设备的图像特征)和“ONH网络”(对6种ONH组织进行3D分割)。我们发现,只有当使用“增强器”对OCT图像进行预处理时,在3种设备中的任何一种上训练的“ONH网络”才能成功地从其他两种未见过的设备中高性能地分割出ONH组织(Dice系数>0.92)。我们证明,无需新设备的手动分割数据,就可以自动分割来自新设备的OCT图像。