文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

TMC-1 复合物的结构阐明了机械感觉转导机制。

Structures of the TMC-1 complex illuminate mechanosensory transduction.

机构信息

Vollum Institute, Oregon Health and Science University, Portland, OR, USA.

Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR, USA.

出版信息

Nature. 2022 Oct;610(7933):796-803. doi: 10.1038/s41586-022-05314-8. Epub 2022 Oct 12.


DOI:10.1038/s41586-022-05314-8
PMID:36224384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9605866/
Abstract

The initial step in the sensory transduction pathway underpinning hearing and balance in mammals involves the conversion of force into the gating of a mechanosensory transduction channel. Despite the profound socioeconomic impacts of hearing disorders and the fundamental biological significance of understanding mechanosensory transduction, the composition, structure and mechanism of the mechanosensory transduction complex have remained poorly characterized. Here we report the single-particle cryo-electron microscopy structure of the native transmembrane channel-like protein 1 (TMC-1) mechanosensory transduction complex isolated from Caenorhabditis elegans. The two-fold symmetric complex is composed of two copies each of the pore-forming TMC-1 subunit, the calcium-binding protein CALM-1 and the transmembrane inner ear protein TMIE. CALM-1 makes extensive contacts with the cytoplasmic face of the TMC-1 subunits, whereas the single-pass TMIE subunits reside on the periphery of the complex, poised like the handles of an accordion. A subset of complexes additionally includes a single arrestin-like protein, arrestin domain protein (ARRD-6), bound to a CALM-1 subunit. Single-particle reconstructions and molecular dynamics simulations show how the mechanosensory transduction complex deforms the membrane bilayer and suggest crucial roles for lipid-protein interactions in the mechanism by which mechanical force is transduced to ion channel gating.

摘要

哺乳动物听觉和平衡的感觉转导途径的初始步骤涉及将力转换为机械感觉转导通道的门控。尽管听力障碍具有深远的社会经济影响,并且理解机械感觉转导具有根本的生物学意义,但机械感觉转导复合物的组成、结构和机制仍未得到很好的描述。在这里,我们报告了从秀丽隐杆线虫中分离出的天然跨膜通道样蛋白 1(TMC-1)机械感觉转导复合物的单颗粒冷冻电子显微镜结构。该二倍对称复合物由两个 TMC-1 亚基、钙结合蛋白 CALM-1 和跨膜内耳蛋白 TMIE 的拷贝组成。CALM-1 与 TMC-1 亚基的细胞质面进行广泛接触,而单次跨膜 TMIE 亚基位于复合物的外围,类似于手风琴的手柄。一部分复合物还包含一个与 CALM-1 亚基结合的单 arrestin 样蛋白,即 arrestin 结构域蛋白 (ARRD-6)。单颗粒重建和分子动力学模拟表明了机械感觉转导复合物如何使膜双层变形,并提出了脂质-蛋白相互作用在机械力转导为离子通道门控的机制中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/ccaee7ddee6b/41586_2022_5314_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/b082487daf76/41586_2022_5314_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/6144eac7ff95/41586_2022_5314_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/85af8d86969b/41586_2022_5314_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/9146a701ee48/41586_2022_5314_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/091579c5db78/41586_2022_5314_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/f813a109aad5/41586_2022_5314_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/c47dbf9e39df/41586_2022_5314_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/ba1e4ae4d977/41586_2022_5314_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/ff6978c78f77/41586_2022_5314_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/d284caadcdca/41586_2022_5314_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/867ec89f3d46/41586_2022_5314_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/c503513eee23/41586_2022_5314_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/62f358e184dd/41586_2022_5314_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/42a1f3ded94e/41586_2022_5314_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/ccaee7ddee6b/41586_2022_5314_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/b082487daf76/41586_2022_5314_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/6144eac7ff95/41586_2022_5314_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/85af8d86969b/41586_2022_5314_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/9146a701ee48/41586_2022_5314_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/091579c5db78/41586_2022_5314_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/f813a109aad5/41586_2022_5314_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/c47dbf9e39df/41586_2022_5314_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/ba1e4ae4d977/41586_2022_5314_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/ff6978c78f77/41586_2022_5314_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/d284caadcdca/41586_2022_5314_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/867ec89f3d46/41586_2022_5314_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/c503513eee23/41586_2022_5314_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/62f358e184dd/41586_2022_5314_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/42a1f3ded94e/41586_2022_5314_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2374/9605866/ccaee7ddee6b/41586_2022_5314_Fig15_ESM.jpg

相似文献

[1]
Structures of the TMC-1 complex illuminate mechanosensory transduction.

Nature. 2022-10

[2]
The structure of the TMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction.

Proc Natl Acad Sci U S A. 2024-2-20

[3]
Structure of TMC-2 complex suggests roles of lipid-mediated subunit contacts in mechanosensory transduction.

bioRxiv. 2023-8-17

[4]
Structure of a eukaryotic cyclic-nucleotide-gated channel.

Nature. 2017-2-2

[5]
Ankyrin Is An Intracellular Tether for TMC Mechanotransduction Channels.

Neuron. 2020-4-22

[6]
Sequence variations and accessory proteins adapt TMC functions to distinct sensory modalities.

Neuron. 2024-9-4

[7]
Molecular modeling of mechanosensory ion channel structural and functional features.

PLoS One. 2010-9-16

[8]
Cryo-electron microscopy structure of CLHM1 ion channel from Caenorhabditis elegans.

Protein Sci. 2020-8

[9]
The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel.

Nature. 2002-12-12

[10]
MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity.

J Gen Physiol. 2008-6

引用本文的文献

[1]
CTCF Represses CIB2 to Balance Proliferation and Differentiation of Goat Myogenic Satellite Cells via Integrin α7β1-PI3K/AKT Axis.

Cells. 2025-8-5

[2]
Editorial: Pathobiological defects in sensorineural hearing loss: from identification to rescue.

Front Mol Neurosci. 2025-7-29

[3]
Molecular Determinants of TMC Protein Biogenesis and Trafficking.

Int J Mol Sci. 2025-7-1

[4]
TMC1 and TMC2 are cholesterol-dependent scramblases that regulate membrane homeostasis in auditory hair cells.

bioRxiv. 2025-7-4

[5]
Groove architecture controls lipid scrambling in simulations of protein and model systems.

bioRxiv. 2025-7-1

[6]
Identification of druggable binding sites and small molecules as modulators of TMC1.

Commun Biol. 2025-5-13

[7]
Coevolving residues distant from the ligand binding site are involved in GAF domain function.

Commun Chem. 2025-4-7

[8]
The Reconstruction of Peripheral Auditory Circuit: Recent Advances and Future Challenges.

Adv Sci (Weinh). 2025-8

[9]
Hair cell apoptosis and deafness in mutations.

Proc Natl Acad Sci U S A. 2025-3-25

[10]
Esrp1 and Esrp2 regulate the stability of / mRNAs in zebrafish sensory hair cells.

J Neurosci. 2025-3-14

本文引用的文献

[1]
Mechanical gating of the auditory transduction channel TMC1 involves the fourth and sixth transmembrane helices.

Sci Adv. 2022-7-15

[2]
Membrane Mixer: A Toolkit for Efficient Shuffling of Lipids in Heterogeneous Biological Membranes.

J Chem Inf Model. 2022-2-28

[3]
Highly accurate protein structure prediction with AlphaFold.

Nature. 2021-8

[4]
CIB2 and CIB3 are auxiliary subunits of the mechanotransduction channel of hair cells.

Neuron. 2021-7-7

[5]
How Transmembrane Inner Ear (TMIE) plays role in the auditory system: A mystery to us.

J Cell Mol Med. 2021-5-13

[6]
Gating the pore of the calcium-activated chloride channel TMEM16A.

Nat Commun. 2021-2-4

[7]
The Mechanosensory Transduction Machinery in Inner Ear Hair Cells.

Annu Rev Biophys. 2021-5-6

[8]
Discoveries in structure and physiology of mechanically activated ion channels.

Nature. 2020-11

[9]
Protein Structure Modeling with MODELLER.

Methods Mol Biol. 2021

[10]
Scalable molecular dynamics on CPU and GPU architectures with NAMD.

J Chem Phys. 2020-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索