Suppr超能文献

在蛋白质和模型系统模拟中,凹槽结构控制脂质翻转。

Groove architecture controls lipid scrambling in simulations of protein and model systems.

作者信息

Smith Harper E, Harrison-Rawn Travis, Zheng Wang, Ballesteros Angela, Sotomayor Marcos

机构信息

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210.

Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210.

出版信息

bioRxiv. 2025 Jul 1:2025.06.27.662058. doi: 10.1101/2025.06.27.662058.

Abstract

Lipid bilayers are essential to life as they surround most cells and membrane-bound organelles. The integrity and fate of cells depend on the asymmetric makeup of lipid bilayers with various membrane proteins regulating the lipid composition of a bilayer's two leaflets. Lipids scramblases are one of the primary regulators of lipid asymmetry in bilayers, spontaneously transferring lipids between membrane leaflets. Members of the TMEM16, OSCA/TMEM63, and TMC families have been suggested to be lipid scramblases. Despite significant differences, these proteins share a common structural architecture that features a membrane-exposed groove. The "credit card" mechanism proposes that lipids switch leaflets by moving their polar head groups either inside (partially dry) or on the surface of (wet) membrane-exposed, open hydrophilic grooves. However, emerging evidence of closed-groove scrambling challenges this model. Given the sequence diversity of groove-lining amino acids in TMEM16, OSCA/TMEM63, and TMC proteins, we hypothesized that lipid scrambling is primarily determined by groove architecture. To test this hypothesis and the credit card mechanism, we used coarse-grained molecular dynamics simulations of experimental structures and AlphaFold-generated models of six different scramblases in closed and open states. In these simulations, we observed little scramblase activity in most closed-state configurations but robust scrambling by all open-state models. We then built simplified TMEM16-based scramblases with only three bead types uniformly set for solvent-facing, transmembrane, and groove regions. We used this and further simplified models to vary groove surface hydrophilicity, groove surface geometry, and groove architecture. Our models support the partially dry and wet credit card mechanisms and suggest that groove architecture plays a more important role in facilitating lipid scrambling than the detailed sequence of groove-lining amino acids.

摘要

脂质双层对于生命至关重要,因为它们围绕着大多数细胞和膜结合细胞器。细胞的完整性和命运取决于脂质双层的不对称组成,各种膜蛋白调节着双层两个小叶的脂质组成。脂质翻转酶是双层中脂质不对称的主要调节因子之一,可在膜小叶之间自发转移脂质。TMEM16、OSCA/TMEM63和TMC家族的成员被认为是脂质翻转酶。尽管存在显著差异,但这些蛋白质具有共同的结构架构,其特征是有一个膜暴露凹槽。“信用卡”机制提出,脂质通过将其极性头部基团移动到膜暴露的开放亲水凹槽内部(部分干燥)或表面(湿润)来切换小叶。然而,关于封闭凹槽翻转的新证据对该模型提出了挑战。鉴于TMEM16、OSCA/TMEM63和TMC蛋白中凹槽内衬氨基酸的序列多样性,我们假设脂质翻转主要由凹槽结构决定。为了验证这一假设和信用卡机制,我们对六种不同翻转酶在封闭和开放状态下的实验结构以及AlphaFold生成的模型进行了粗粒度分子动力学模拟。在这些模拟中,我们观察到大多数封闭状态构型中几乎没有翻转酶活性,但所有开放状态模型都有强大的翻转作用。然后,我们构建了基于TMEM16的简化翻转酶,仅为面向溶剂、跨膜和凹槽区域均匀设置了三种珠子类型。我们使用这个模型以及进一步简化的模型来改变凹槽表面亲水性、凹槽表面几何形状和凹槽结构。我们的模型支持部分干燥和湿润的信用卡机制,并表明凹槽结构在促进脂质翻转方面比凹槽内衬氨基酸的详细序列发挥更重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95d6/12236793/edbe6648e0e7/nihpp-2025.06.27.662058v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验