文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

与人类身高相关的常见遗传变异的饱和图谱。

A saturated map of common genetic variants associated with human height.

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.

Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.

出版信息

Nature. 2022 Oct;610(7933):704-712. doi: 10.1038/s41586-022-05275-y. Epub 2022 Oct 12.


DOI:10.1038/s41586-022-05275-y
PMID:36224396
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9605867/
Abstract

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.

摘要

常见的单核苷酸多态性(SNP)预计可共同解释人类身高表型变异的 40-50%,但确定具体变体和相关区域需要庞大的样本量。在这里,我们利用来自 540 万不同祖先个体的全基因组关联研究数据,表明与身高显著相关的 12111 个独立 SNP 几乎解释了所有常见 SNP 遗传率。这些 SNP 聚集在 7209 个不重叠的基因组片段内,平均大小约为 90kb,覆盖了大约 21%的基因组。独立关联的密度在整个基因组中各不相同,密度增加的区域富含生物学上相关的基因。在样本外估计和预测中,12111 个 SNP(或 HapMap 3 面板中的所有 SNP)在欧洲血统人群中解释了 40%(45%)的表型方差,但在其他血统人群中仅解释了约 10-20%(14-24%)。遗传效应大小、相关区域和基因优先级在不同血统之间相似,表明预测准确性的降低可能是由于连锁不平衡和相关区域内等位基因频率的差异所致。最后,我们表明,即使在需要暗示因果基因和变体的样本量较小的情况下,也可以检测到相关的生物学途径。总体而言,这项研究提供了一个包含大多数常见身高相关变体的特定基因组区域的综合图谱。尽管该图谱在欧洲血统人群中已经饱和,但需要进一步的研究来实现其他血统的等效饱和。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/be2ff69f1c6b/41586_2022_5275_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/ef60ba8b25a6/41586_2022_5275_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/e5af22205d6f/41586_2022_5275_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/ad45d93b5587/41586_2022_5275_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/2e0e128647ee/41586_2022_5275_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/abc3d0f04837/41586_2022_5275_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/23935a3a6c05/41586_2022_5275_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/f98296699b56/41586_2022_5275_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/29d438d057be/41586_2022_5275_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/5df3944f2892/41586_2022_5275_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/f30bbd59751b/41586_2022_5275_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/001784d8f821/41586_2022_5275_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/eaff3bfb39d1/41586_2022_5275_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/719c4083516d/41586_2022_5275_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/be2ff69f1c6b/41586_2022_5275_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/ef60ba8b25a6/41586_2022_5275_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/e5af22205d6f/41586_2022_5275_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/ad45d93b5587/41586_2022_5275_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/2e0e128647ee/41586_2022_5275_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/abc3d0f04837/41586_2022_5275_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/23935a3a6c05/41586_2022_5275_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/f98296699b56/41586_2022_5275_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/29d438d057be/41586_2022_5275_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/5df3944f2892/41586_2022_5275_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/f30bbd59751b/41586_2022_5275_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/001784d8f821/41586_2022_5275_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/eaff3bfb39d1/41586_2022_5275_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/719c4083516d/41586_2022_5275_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5978/9605867/be2ff69f1c6b/41586_2022_5275_Fig14_ESM.jpg

相似文献

[1]
A saturated map of common genetic variants associated with human height.

Nature. 2022-10

[2]
Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults.

PLoS One. 2015-6-30

[3]
Transferability and fine-mapping of genome-wide associated loci for adult height across human populations.

PLoS One. 2009-12-22

[4]
Effects of single SNPs, haplotypes, and whole-genome LD maps on accuracy of association mapping.

Genet Epidemiol. 2007-4

[5]
Hundreds of variants clustered in genomic loci and biological pathways affect human height.

Nature. 2010-9-29

[6]
Common SNPs explain a large proportion of the heritability for human height.

Nat Genet. 2010-6-20

[7]
Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping.

G3 (Bethesda). 2019-12-3

[8]
Cross-ancestry genome-wide association studies identified heterogeneous loci associated with differences of allele frequency and regulome tagging between participants of European descent and other ancestry groups from the UK Biobank.

Hum Mol Genet. 2021-7-9

[9]
Similarity in recombination rate and linkage disequilibrium at CYP2C and CYP2D cytochrome P450 gene regions among Europeans indicates signs of selection and no advantage of using tagSNPs in population isolates.

Pharmacogenet Genomics. 2012-12

[10]
Comparing genetic variants detected in the 1000 genomes project with SNPs determined by the International HapMap Consortium.

J Genet. 2015-12

引用本文的文献

[1]
Efficient candidate drug target discovery through proteogenomics in a Scottish cohort.

Commun Biol. 2025-8-29

[2]
DeepAnnotation: A novel interpretable deep learning-based genomic selection model that integrates comprehensive functional annotations.

Gigascience. 2025-1-6

[3]
Molecular Genetic Basis of Reproductive Fitness in Tibetan Sheep on the Qinghai-Tibet Plateau.

Genes (Basel). 2025-7-29

[4]
Family history of fracture and fracture risk: a meta-analysis to update the FRAX® risk assessment tool.

Osteoporos Int. 2025-8-23

[5]
Multi-ancestral genome-wide association study of clinically defined nicotine dependence reveals strong genetic correlations with other substance use disorders and health-related traits.

Psychol Med. 2025-8-20

[6]
Predictive capabilities of polygenic scores in an East-Asian population-based cohort: the Singapore Chinese health study.

Commun Biol. 2025-8-15

[7]
The genetic architecture of cervical length is shared with spontaneous preterm birth risk.

Commun Med (Lond). 2025-8-14

[8]
Higher eQTL power reveals signals that boost GWAS colocalization.

bioRxiv. 2025-8-5

[9]
Modeling the genomic architecture of adiposity and anthropometrics across the lifespan.

Nat Commun. 2025-8-13

[10]
Principled measures and estimates of trait polygenicity.

bioRxiv. 2025-7-15

本文引用的文献

[1]
Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data.

Nat Genet. 2022-3

[2]
Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort.

Am J Hum Genet. 2022-1-6

[3]
The power of genetic diversity in genome-wide association studies of lipids.

Nature. 2021-12

[4]
Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits.

Nat Commun. 2021-11-30

[5]
Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets.

Nat Commun. 2021-10-18

[6]
Exome sequencing and analysis of 454,787 UK Biobank participants.

Nature. 2021-11

[7]
Protein-coding repeat polymorphisms strongly shape diverse human phenotypes.

Science. 2021-9-24

[8]
The distribution of common-variant effect sizes.

Nat Genet. 2021-8

[9]
Estimating heritability and its enrichment in tissue-specific gene sets in admixed populations.

Hum Mol Genet. 2021-7-28

[10]
Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits.

Nat Genet. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索