Suppr超能文献

一种贝叶斯方法,用于建立预测结直肠癌患者早期复发和术后死亡的潜在预测因素模型。

A bayesian approach to model the underlying predictors of early recurrence and postoperative death in patients with colorectal Cancer.

机构信息

Department of Statistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Mahdavi Blvd, 4513956111, Zanjan, Iran.

Modeling of Non-communicable Diseases Research Canter, Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.

出版信息

BMC Med Res Methodol. 2022 Oct 12;22(1):269. doi: 10.1186/s12874-022-01746-y.

Abstract

OBJECTIVE

This study aimed at utilizing a Bayesian approach semi-competing risks technique to model the underlying predictors of early recurrence and postoperative Death in patients with colorectal cancer (CRC).

METHODS

In this prospective cohort study, 284 patients with colorectal cancer, who underwent surgery, referred to Imam Khomeini clinic in Hamadan from 2001 to 2017. The primary outcomes were the probability of recurrence, the probability of Mortality without recurrence, and the probability of Mortality after recurrence. The patients 'recurrence status was determined from patients' records. The Bayesian survival modeling was carried out by semi-competing risks illness-death models, with accelerated failure time (AFT) approach, in R 4.1 software. The best model was chosen according to the lowest deviance information criterion (DIC) and highest logarithm of the pseudo marginal likelihood (LPML).

RESULTS

The log-normal model (DIC = 1633, LPML = -811), was the optimal model. The results showed that gender(Time Ratio = 0.764: 95% Confidence Interval = 0.456-0.855), age at diagnosis (0.764: 0.538-0.935 ), T stage (0601: 0.530-0.713), N stage (0.714: 0.577-0.935 ), tumor size (0.709: 0.610-0.929), grade of differentiation at poor (0.856: 0.733-0.988), and moderate (0.648: 0.503-0.955) levels, and the number of chemotherapies (1.583: 1.367-1.863) were significantly related to recurrence. Also, age at diagnosis (0.396: 0.313-0.532), metastasis to other sites (0.566: 0.490-0.835), T stage (0.363: 0.592 - 0.301), T stage (0.434: 0.347-0.545), grade of differentiation at moderate level (0.527: 0.387-0.674), tumor size (0.595: 0.500-0.679), and the number of chemotherapies (1.541: 1.332-2.243) were the significantly predicted the death. Also, age at diagnosis (0.659: 0.559-0.803), and the number of chemotherapies (2.029: 1.792-2.191) were significantly related to mortality after recurrence.

CONCLUSION

According to specific results obtained from the optimal Bayesian log-normal model for terminal and non-terminal events, appropriate screening strategies and the earlier detection of CRC leads to substantial improvements in the survival of patients.

摘要

目的

本研究旨在利用贝叶斯半竞争风险技术模型来预测结直肠癌(CRC)患者早期复发和术后死亡的潜在预测因素。

方法

在这项前瞻性队列研究中,284 名接受手术的结直肠癌患者于 2001 年至 2017 年期间被转诊至哈马丹的伊玛目霍梅尼诊所。主要结局是复发的概率、无复发死亡率的概率和复发后的死亡率概率。通过贝叶斯生存建模,采用半竞争风险疾病死亡模型,加速失效时间(AFT)方法,在 R 4.1 软件中进行分析。根据最低偏差信息准则(DIC)和最高对数伪似然度(LPML)选择最佳模型。

结果

对数正态模型(DIC=1633,LPML=-811)是最佳模型。结果表明,性别(时间比=0.764:95%置信区间=0.456-0.855)、诊断时年龄(0.764:0.538-0.935)、T 期(0601:0.530-0.713)、N 期(0.714:0.577-0.935)、肿瘤大小(0.709:0.610-0.929)、分化程度差(0.856:0.733-0.988)和中等(0.648:0.503-0.955)、化疗次数(1.583:1.367-1.863)与复发显著相关。此外,诊断时年龄(0.396:0.313-0.532)、远处转移(0.566:0.490-0.835)、T 期(0.363:0.592-0.301)、T 期(0.434:0.347-0.545)、中等分化程度(0.527:0.387-0.674)、肿瘤大小(0.595:0.500-0.679)和化疗次数(1.541:1.332-2.243)与死亡显著相关。此外,诊断时年龄(0.659:0.559-0.803)和化疗次数(2.029:1.792-2.191)与复发后的死亡率显著相关。

结论

根据终端和非终端事件最优贝叶斯对数正态模型得出的具体结果,适当的筛查策略和更早地发现 CRC,可显著改善患者的生存率。

相似文献

4
Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching.
Lifetime Data Anal. 2014 Jan;20(1):76-105. doi: 10.1007/s10985-013-9254-8. Epub 2013 Mar 30.
7
Bayesian inference of the fully specified subdistribution model for survival data with competing risks.
Lifetime Data Anal. 2012 Jul;18(3):339-63. doi: 10.1007/s10985-012-9221-9. Epub 2012 Apr 8.
8
A competing risk analysis of colorectal cancer recurrence after curative surgery.
BMC Gastroenterol. 2022 Mar 3;22(1):95. doi: 10.1186/s12876-022-02161-9.

本文引用的文献

2
Risk factors for recurrence in colorectal cancer: a retrospective analysis in a regional Australian hospital.
ANZ J Surg. 2021 Nov;91(11):2482-2486. doi: 10.1111/ans.17209. Epub 2021 Sep 30.
5
SemiCompRisks: An R Package for the Analysis of Independent and Cluster-correlated Semi-competing Risks Data.
R J. 2019 Jun;11(1):376-400. doi: 10.32614/rj-2019-038. Epub 2019 Aug 20.
7
Colorectal cancer mortality in Mato Grosso, Brazil: Spatiotemporal trends.
Geospat Health. 2020 Jun 17;15(1). doi: 10.4081/gh.2020.826.
8
Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors.
Prz Gastroenterol. 2019;14(2):89-103. doi: 10.5114/pg.2018.81072. Epub 2019 Jan 6.
9
[Hereditary Colorectal Cancer: Clinics, Diagnostics and Management].
Ther Umsch. 2018;75(10):601-606. doi: 10.1024/0040-5930/a001046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验