Ge Miaomiao, Chen Ming-Hui
Clinical Bio Statistics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA.
Lifetime Data Anal. 2012 Jul;18(3):339-63. doi: 10.1007/s10985-012-9221-9. Epub 2012 Apr 8.
Competing risks data are routinely encountered in various medical applications due to the fact that patients may die from different causes. Recently, several models have been proposed for fitting such survival data. In this paper, we develop a fully specified subdistribution model for survival data in the presence of competing risks via a subdistribution model for the primary cause of death and conditional distributions for other causes of death. Various properties of this fully specified subdistribution model have been examined. An efficient Gibbs sampling algorithm via latent variables is developed to carry out posterior computations. Deviance information criterion (DIC) and logarithm of the pseudomarginal likelihood (LPML) are used for model comparison. An extensive simulation study is carried out to examine the performance of DIC and LPML in comparing the cause-specific hazards model, the mixture model, and the fully specified subdistribution model. The proposed methodology is applied to analyze a real dataset from a prostate cancer study in detail.
由于患者可能死于不同原因,竞争风险数据在各种医学应用中经常遇到。最近,已经提出了几种模型来拟合此类生存数据。在本文中,我们通过针对主要死亡原因的子分布模型和其他死亡原因的条件分布,为存在竞争风险的生存数据开发了一个完全指定的子分布模型。已经研究了这个完全指定的子分布模型的各种性质。开发了一种通过潜在变量的高效吉布斯采样算法来进行后验计算。偏差信息准则(DIC)和伪边际似然对数(LPML)用于模型比较。进行了广泛的模拟研究,以检验DIC和LPML在比较特定原因风险模型、混合模型和完全指定的子分布模型时的性能。所提出的方法被应用于详细分析来自前列腺癌研究的真实数据集。