文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

阿根廷本土植物提取物通过抑制外排转运蛋白 Mdr1 和 Cdr1 逆转了念珠菌属中的氟康唑耐药性。

Extracts from Argentinian native plants reverse fluconazole resistance in Candida species by inhibiting the efflux transporters Mdr1 and Cdr1.

机构信息

Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Avda. Armada Argentina 3555, X5016DHK, Córdoba, Argentina.

Department of Medicine, Division of Health Science, Universidad del Norte, Km 5, Vía Puerto Colombia, Área Metropolitana de Barranquilla, 081007, Barranquilla, Colombia.

出版信息

BMC Complement Med Ther. 2022 Oct 12;22(1):264. doi: 10.1186/s12906-022-03745-4.


DOI:10.1186/s12906-022-03745-4
PMID:36224581
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9555179/
Abstract

BACKGROUND: The development of multidrug resistance (MDR) associated with the overexpression of the efflux transporters Mdr1 and Cdr1 in Candida species impedes antifungal therapies. The urgent need for novel agents able to inhibit the function of both pumps, led us to evaluate this property in 137 extracts obtained from Argentinian plants. METHODS: The ability of the extracts to reverse efflux pump-mediated MDR was determined with an agar chemosensitization assay using fluconazole (FCZ) resistant Mdr1- and Cdr1-overexpressing clinical isolates of Candida albicans and Candida glabrata as well as Saccharomyces cerevisiae strains selectively expressing Mdr1 (AD/CaMDR1) or Cdr1 (AD/CaCDR1). The resistance-reversing activity of the most potent extracts was further confirmed using a Nile Red accumulation assay. RESULTS: Fifteen plant extracts overcame the FCZ resistance of Candida albicans 1114, which overexpresses CaMdr1 and CaCdr1, and AD/CaMDR1, with those from Acalypha communis and Solanum atriplicifolium being the most effective showing 4- to 16-fold reversal of resistance at concentrations ≥ 25 µg/mL. Both extracts, and to a lesser extent that from Pterocaulon alopecuroides, also restored FCZ sensitivity in CgCdr1-overexpressing C. glabrata 109 and in AD/CaCDR1 with fold reversal values ranging from 4 to 32 and therefore demonstrating a dual effect against Mdr1 and Cdr1. Both, A. communis and S. atriplicifolium extracts at concentrations ≥ 12.5 and ≥ 25 µg/mL, respectively, increased the intracellular Nile Red accumulation in all yeast strains overexpressing efflux pumps. CONCLUSIONS: The non-toxic and highly active extracts from A. communis and S. atripicifolium, provide promising sources of compounds for potentiating the antifungal effect of FCZ by blocking the efflux function of Mdr1 and Cdr1 transporters.

摘要

背景:在念珠菌属物种中,多药耐药(MDR)的发展与外排转运蛋白 Mdr1 和 Cdr1 的过度表达有关,这阻碍了抗真菌治疗。我们迫切需要能够抑制这两种泵功能的新型药物,因此我们评估了来自阿根廷植物的 137 种提取物的这种特性。

方法:使用琼脂化学增敏试验,使用氟康唑(FCZ)耐药 Mdr1 和 Cdr1 过表达的临床分离株白色念珠菌和光滑念珠菌以及选择性表达 Mdr1(AD/CaMDR1)或 Cdr1(AD/CaCDR1)的酿酒酵母菌株,确定提取物逆转外排泵介导的 MDR 的能力。最有效的提取物的逆转耐药活性进一步通过尼罗红积累试验得到证实。

结果:15 种植物提取物克服了白色念珠菌 1114 的 FCZ 耐药性,该菌过表达 CaMdr1 和 CaCdr1 以及 AD/CaMDR1,其中 Acalypha communis 和 Solanum atriplicifolium 的提取物最有效,在浓度≥25μg/ml 时表现出 4 至 16 倍的耐药性逆转。两种提取物,以及程度较小的 Pterocaulon alopecuroides 提取物,也恢复了 CgCdr1 过表达的 C. glabrata 109 和 AD/CaCDR1 对 FCZ 的敏感性,逆转倍数范围为 4 至 32,因此对 Mdr1 和 Cdr1 具有双重作用。在所有过度表达外排泵的酵母菌株中,A. communis 和 S. atriplicifolium 提取物在浓度分别≥12.5 和≥25μg/ml 时,均增加了细胞内尼罗红的积累。

结论:A. communis 和 S. atriplicifolium 的无毒且高度有效的提取物为通过阻断 Mdr1 和 Cdr1 转运蛋白的外排功能来增强 FCZ 的抗真菌作用提供了有希望的化合物来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa21/9555179/7cc8a872c92f/12906_2022_3745_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa21/9555179/f314194132f0/12906_2022_3745_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa21/9555179/7cc8a872c92f/12906_2022_3745_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa21/9555179/f314194132f0/12906_2022_3745_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa21/9555179/7cc8a872c92f/12906_2022_3745_Fig2_HTML.jpg

相似文献

[1]
Extracts from Argentinian native plants reverse fluconazole resistance in Candida species by inhibiting the efflux transporters Mdr1 and Cdr1.

BMC Complement Med Ther. 2022-10-12

[2]
Synthetic Organotellurium Compounds Sensitize Drug-Resistant Candida albicans Clinical Isolates to Fluconazole.

Antimicrob Agents Chemother. 2016-12-27

[3]
Inhibitors of the Candida albicans Major Facilitator Superfamily Transporter Mdr1p Responsible for Fluconazole Resistance.

PLoS One. 2015-5-7

[4]
[Investigation of the expression levels of efflux pumps in fluconazole-resistant Candida albicans isolates].

Mikrobiyol Bul. 2014-4

[5]
Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis.

Antimicrob Agents Chemother. 1998-7

[6]
Increased expression and hotspot mutations of the multidrug efflux transporter, CDR1 in azole-resistant Candida albicans isolates from vaginitis patients.

FEMS Microbiol Lett. 2005-8-15

[7]
[Investigation of mutations in transcription factors of efflux pump genes in fluconazole-resistant Candida albicans strains overexpressing the efflux pumps].

Mikrobiyol Bul. 2015-10

[8]
The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates.

Antimicrob Agents Chemother. 2011-12-27

[9]
Expression of Major Efflux Pumps in Fluconazole-Resistant Candida albicans.

Infect Disord Drug Targets. 2017

[10]
Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters.

Antimicrob Agents Chemother. 1995-11

引用本文的文献

[1]
Yeast Particle Encapsulation of Azole Fungicides for Enhanced Treatment of Azole-Resistant .

J Funct Biomater. 2024-7-23

[2]
Antifungal activity of tannic acid against Candida spp. and its mechanism of action.

Braz J Microbiol. 2024-12

[3]
Mechanism and bioinformatics analysis of the effect of berberine-enhanced fluconazole against drug-resistant Candida albicans.

BMC Microbiol. 2024-6-7

[4]
Enhancing the Antifungal Efficacy of Fluconazole with a Diterpene: Abietic Acid as a Promising Adjuvant to Combat Antifungal Resistance in spp.

Antibiotics (Basel). 2023-10-26

[5]
Inhibition of Multidrug Efflux Pumps Belonging to the Major Facilitator Superfamily in Bacterial Pathogens.

Biomedicines. 2023-5-15

本文引用的文献

[1]
Structure activity relationships and the binding mode of quinolinone-pyrimidine hybrids as reversal agents of multidrug resistance mediated by P-gp.

Sci Rep. 2021-8-19

[2]
Antifungal Activity of Minocycline and Azoles Against Fluconazole-Resistant Species.

Front Microbiol. 2021-5-13

[3]
Antimicrobial activity of the volatile substances from essential oils.

BMC Complement Med Ther. 2021-4-17

[4]
A global view on fungal infections in humans and animals: infections caused by dimorphic fungi and dermatophytoses.

J Appl Microbiol. 2021-12

[5]
Nile Red Incubation Time Before Reading Fluorescence Greatly Influences the Yeast Neutral Lipids Quantification.

Front Microbiol. 2021-3-4

[6]
Multiple roles of ABC transporters in yeast.

Fungal Genet Biol. 2021-5

[7]
Directed Mutational Strategies Reveal Drug Binding and Transport by the MDR Transporters of .

J Fungi (Basel). 2021-1-20

[8]
Plant extracts and betulin from Ligaria cuneifolia inhibit P-glycoprotein function in leukemia cells.

Food Chem Toxicol. 2021-1

[9]
Invasive Candidiasis Species Distribution and Trends, United States, 2009-2017.

J Infect Dis. 2021-4-8

[10]
Immune defence to invasive fungal infections: A comprehensive review.

Biomed Pharmacother. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索