Suppr超能文献

基于图像颜色校准和自监督视图合成的用于三维光场显示的实时密集视图成像。

Real-time dense-view imaging for three-dimensional light-field display based on image color calibration and self-supervised view synthesis.

作者信息

Guo Xiao, Sang Xinzhu, Yan Binbin, Wang Huachun, Ye Xiaoqian, Chen Shuo, Wan Huaming, Li Ningchi, Zeng Zhehao, Chen Duo, Wang Peng, Xing Shujun

出版信息

Opt Express. 2022 Jun 6;30(12):22260-22276. doi: 10.1364/OE.461789.

Abstract

Three-Dimensional (3D) light-field display has achieved promising improvement in recent years. However, since the dense-view images cannot be collected fast in real-world 3D scenes, the real-time 3D light-field display is still challenging to achieve in real scenes, especially at the high-resolution 3D display. Here, a real-time 3D light-field display method with dense-view is proposed based on image color correction and self-supervised optical flow estimation, and a high-quality and high frame rate of 3D light-field display can be realized simultaneously. A sparse camera array is firstly used to capture sparse-view images in the proposed method. To eliminate the color deviation of the sparse views, the imaging process of the camera is analyzed, and a practical multi-layer perception (MLP) network is proposed to perform color calibration. Given sparse views with consistent color, the optical flow can be estimated by a lightweight convolutional neural network (CNN) at high speed, which uses the input image pairs to learn the optical flow in a self-supervised manner. With inverse warp operation, dense-view images can be synthesized in the end. Quantitative and qualitative experiments are performed to evaluate the feasibility of the proposed method. Experimental results show that over 60 dense-view images at a resolution of 1024 × 512 can be generated with 11 input views at a frame rate over 20 fps, which is 4× faster than previous optical flow estimation methods PWC-Net and LiteFlowNet3. Finally, large viewing angles and high-quality 3D light-field display at 3840 × 2160 resolution can be achieved in real-time.

摘要

近年来,三维(3D)光场显示取得了显著进展。然而,由于在真实世界的3D场景中无法快速采集密集视角图像,因此在真实场景中实现实时3D光场显示仍然具有挑战性,尤其是在高分辨率3D显示方面。在此,基于图像色彩校正和自监督光流估计,提出了一种具有密集视角的实时3D光场显示方法,可同时实现高质量和高帧率的3D光场显示。在所提出的方法中,首先使用稀疏相机阵列捕获稀疏视角图像。为了消除稀疏视角的颜色偏差,分析了相机的成像过程,并提出了一种实用的多层感知器(MLP)网络进行色彩校准。给定具有一致颜色的稀疏视角,可以通过轻量级卷积神经网络(CNN)以高速估计光流,该网络使用输入图像对以自监督方式学习光流。通过逆扭曲操作,最终可以合成密集视角图像。进行了定量和定性实验以评估所提出方法的可行性。实验结果表明,使用11个输入视角,以超过20帧/秒的帧率,可以生成超过60张分辨率为1024×512的密集视角图像,这比之前的光流估计方法PWC-Net和LiteFlowNet3快4倍。最后,可以实时实现3840×2160分辨率下的大视角和高质量3D光场显示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验