Mohammadian Fatemeh, Zare Sadeghi Arash, Noroozian Maryam, Malekian Vahid, Abbasi Sisara Majid, Hashemi Hasan, Mobarak Salari Hanieh, Valizadeh Gelareh, Samadi Fardin, Sodaei Forough, Saligheh Rad Hamidreza
Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.
Quantitative Medical Imaging/Spectroscopy Group, Tehran University of Medical Science, Tehran, Iran.
J Magn Reson Imaging. 2023 Jun;57(6):1702-1712. doi: 10.1002/jmri.28469. Epub 2022 Oct 13.
Alzheimer disease (AD) is a neurological disorder with brain network dysfunction. Investigation of the brain network functional connectivity (FC) alterations using resting-state functional MRI (rs-fMRI) can provide valuable information about the brain network pattern in early AD diagnosis.
To quantitatively assess FC patterns of resting-state brain networks and graph theory metrics (GTMs) to identify potential features for differentiation of amnestic mild cognitive impairment (aMCI) and late-onset AD from normal.
Prospective.
A total of 14 normal, 16 aMCI, and 13 late-onset AD.
FIELD STRENGTH/SEQUENCE: A 3.0 T; rs-fMRI: single-shot 2D-EPI and T1-weighted structure: MPRAGE.
By applying bivariate correlation coefficient and Fisher transformation on the time series of predefined ROIs' pairs, correlation coefficient matrixes and ROI-to-ROI connectivity (RRC) were extracted. By thresholding the RRC matrix (with a threshold of 0.15), a graph adjacency matrix was created to compute GTMs.
Region of interest (ROI)-based analysis: parametric multivariable statistical analysis (PMSA) with a false discovery rate using (FDR)-corrected P < 0.05 cluster-level threshold together with posthoc uncorrected P < 0.05 connection-level threshold. Graph-theory analysis (GTA): P-FDR-corrected < 0.05. One-way ANOVA and Chi-square tests were used to compare clinical characteristics.
PMSA differentiated AD from normal, with a significant decrease in FC of default mode, salience, dorsal attention, frontoparietal, language, visual, and cerebellar networks. Furthermore, significant increase in overall FC of visual and language networks was observed in aMCI compared to normal. GTA revealed a significant decrease in global-efficiency (28.05 < 45), local-efficiency (22.98 < 24.05), and betweenness-centrality (14.60 < 17.39) for AD against normal. Moreover, a significant increase in local-efficiency (33.46 > 24.05) and clustering-coefficient (25 > 20.18) were found in aMCI compared to normal.
This study demonstrated resting-state FC potential as an indicator to differentiate AD, aMCI, and normal. GTA revealed brain integration and breakdown by providing concise and comprehensible statistics.
1 TECHNICAL EFFICACY: Stage 2.
阿尔茨海默病(AD)是一种伴有脑网络功能障碍的神经疾病。利用静息态功能磁共振成像(rs-fMRI)研究脑网络功能连接(FC)改变可为早期AD诊断中的脑网络模式提供有价值的信息。
定量评估静息态脑网络的FC模式和图论指标(GTM),以识别区分遗忘型轻度认知障碍(aMCI)和晚发性AD与正常状态的潜在特征。
前瞻性研究。
共14名正常受试者、16名aMCI患者和13名晚发性AD患者。
场强/序列:3.0T;rs-fMRI:单次激发二维回波平面成像序列,T1加权结构像:磁化准备快速梯度回波序列。
通过对预定义感兴趣区(ROI)对的时间序列应用双变量相关系数和Fisher变换,提取相关系数矩阵和ROI间连接性(RRC)。通过对RRC矩阵进行阈值处理(阈值为0.15),创建图邻接矩阵以计算GTM。
基于感兴趣区(ROI)的分析:采用参数多变量统计分析(PMSA),使用错误发现率(FDR)校正,聚类水平阈值为P<0.05,连接水平阈值为事后未校正P<0.05。图论分析(GTA):P-FDR校正<0.05。采用单因素方差分析和卡方检验比较临床特征。
PMSA可区分AD与正常状态,默认模式、突显、背侧注意、额顶叶、语言、视觉和小脑网络的FC显著降低。此外,与正常状态相比,aMCI患者视觉和语言网络的整体FC显著增加。GTA显示,与正常状态相比,AD患者的全局效率(28.05<45)、局部效率(22.98<24.05)和介数中心性(14.60<17.39)显著降低。此外,与正常状态相比,aMCI患者的局部效率(33.46>24.05)和聚类系数(25>20.18)显著增加。
本研究表明静息态FC潜力可作为区分AD, aMCI和正常状态的指标。GTA通过提供简洁易懂的统计数据揭示了大脑的整合与破坏情况。
1级 技术效能:2级