School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand.
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2212343119. doi: 10.1073/pnas.2212343119. Epub 2022 Oct 13.
The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.
天然的黑褐色色素真黑素通过吸收和快速耗散能量来保护人类免受高能 UV 光子的伤害,防止蛋白质和 DNA 受损。真黑素的荧光极其微弱,表明其非辐射弛豫时间在皮秒或更短的时间尺度内。然而,真黑素的化学和物理复杂性极大地掩盖了其光保护机制。我们试图使用三种互补的超快光学光谱方法:荧光、瞬态吸收和受激拉曼光谱来确定真黑素中的电子和结构弛豫途径:荧光、瞬态吸收和受激拉曼光谱。我们表明,在紫外可见光谱范围内,发色团的光激发通过相邻耦合发色团之间的超快内转换迅速产生可见激发能的分布,然后所有这些激发能在约 4 ps 的时间尺度内弛豫,而不会将其能量转移到其他发色团上。此外,这些皮秒动力学也存在于单体构建块 5,6-二羟基吲哚-2-羧酸中。通过一系列溶剂和 pH 值依赖性测量,并辅以量子化学建模,我们表明这些超快动力学与来自邻苯二酚羟基基团的部分激发态质子转移到溶剂一致。这种多光谱方法的使用可以确定真黑素中的最小功能单元以及激子耦合和激发态质子转移的作用,并最终揭示真黑素的光保护机制。这一知识有可能用于设计新的软光学元件和有机防晒霜。