Wu Xiugang, Wang Chih-Hsing, Ni Songqian, Wu Chi-Chi, Lin Yan-Ding, Qu Hao-Ting, Wu Zong-Hsien, Liu Denghui, Yang Ming-Zhou, Su Shi-Jian, Zhu Weiguo, Chen Kai, Jiang Zi-Cheng, Yang Shang-Da, Hung Wen-Yi, Chou Pi-Tai
School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China.
Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
J Am Chem Soc. 2024 Sep 4;146(35):24526-24536. doi: 10.1021/jacs.4c07364. Epub 2024 Aug 23.
A novel series of excited-state intramolecular proton transfer (ESIPT) emitters, namely, , , and , endowed with dual intramolecular hydrogen bonds, were designed and synthesized. In the condensed phase, exhibit unmatched absorption and emission spectral features, where the minor 0-0 absorption peak becomes a major one in the emission. Detailed spectroscopic and dynamic approaches conclude fast ground-state equilibrium among enol-enol (EE), enol-keto (EK), and keto-keto (KK) isomers. The equilibrium ratio can be fine-tuned by varying the substitutions in s. Independent of isomers and excitation wavelength, ultrafast ESIPT takes place for all , giving solely KK tautomer emission maximized at >650 nm. The spectral temporal evolution of ESIPT was resolved by a state-of-the-art technique, namely, the transient grating photoluminescence (TGPL), where the rate of EK* → KK* is measured to be (157 fs) for , while a stepwise process is resolved for EE* → EK* → KK*, with a rate of EE* → EK* of (72 fs). For all , the KK tautomer emission shows a narrowband emission with high photoluminescence quantum yields (PLQY, ∼62% for in toluene) in the red, offering advantages to fabricate deep-red organic light-emitting diodes (OLED). The resulting OLEDs give high external quantum efficiency with a spectral full width at half-maximum (FWHM) as narrow as ∼40 nm centered at 666-670 nm for , fully satisfying the BT. 2020 standard. The unique ESIPT properties and highly intense tautomer emission with a small fwhm thus establish a benchmark for reaching red narrowband organic electroluminescence.
设计并合成了一系列新型的激发态分子内质子转移(ESIPT)发光体,即 、 和 ,它们具有双分子内氢键。在凝聚相中, 表现出无与伦比的吸收和发射光谱特征,其中较小的0-0吸收峰在发射中成为主要峰。详细的光谱和动力学方法得出,烯醇-烯醇(EE)、烯醇-酮(EK)和酮-酮(KK)异构体之间存在快速的基态平衡。平衡比可以通过改变 中的取代基进行微调。与异构体和激发波长无关,所有 的ESIPT均超快发生,仅产生在>650 nm处最大化的KK互变异构体发射。通过一种先进的技术,即瞬态光栅光致发光(TGPL),解析了ESIPT的光谱时间演化,其中测得 的EK*→KK速率为(157 fs),而EE→EK*→KK为逐步过程,EE→EK*的速率为(72 fs)。对于所有 ,KK互变异构体发射在红色区域显示出具有高光致发光量子产率(PLQY,在甲苯中 约为62%)的窄带发射,这为制造深红色有机发光二极管(OLED)提供了优势。所得的OLED具有高外部量子效率,半高宽(FWHM)光谱窄至约40 nm,以 为例,中心波长在666-670 nm,完全满足BT. 2020标准。独特的ESIPT特性以及具有小半高宽的高强度互变异构体发射,因此为实现红色窄带有机电致发光树立了一个标杆。