Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain.
Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy.
J Am Chem Soc. 2022 Oct 26;144(42):19542-19558. doi: 10.1021/jacs.2c08620. Epub 2022 Oct 13.
Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and β-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in -dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive Mn-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and O labeling experiments provide strong support to this mechanistic picture.
能够实现强脂肪族 C-H 键选择性功能化的反应为快速增加分子复杂性和扩展化学空间开辟了新的合成途径。特别有价值的是那些可以通过催化剂控制将位点选择性导向特定 C-H 键的反应。在此,我们描述了未活化的伯 C-H 键在羧酸底物中的手性 Mn 催化剂控制的位点和立体选择性γ-内酯化反应。该体系依赖于手性 Mn 催化剂,该催化剂激活水相过氧化氢以促进温和条件下的分子内酯化,通过羧酸根与金属中心结合。该体系表现出高的位点选择性,甚至在存在内在较弱和先验更具反应性的α-和β-碳上的仲和叔 C-H 键的情况下,也能氧化未活化的伯γ-C-H 键。对于具有不等价γ-C-H 键的底物,已经揭示了控制位点选择性的因素。最显著的是,通过操纵催化剂的绝对手性,可以实现刚性环状和双环羧酸的-二甲基结构单元中甲基基团的γ-内酯化,达到前所未有的非对映选择性水平。这种控制已成功地应用于天然产物如樟脑酸、樟脑酸、酮酸和异酮酸的后期内酯化。DFT 分析表明,该反应是由与结合底物的绑定的伯γ-C-H 键发生分子内 1,7-HAT 引发的反弹型机制,生成一个高反应性的 Mn-氧自由基中间体,该中间体迅速通过羧酸根转移进行内酯化。分子内动力学氘同位素效应和 O 标记实验为该反应机理提供了有力的支持。