Choukairi Afailal Najoua, Chan Siu-Chung, Costas Miquel
Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia, E-17071, Spain.
Angew Chem Int Ed Engl. 2025 Jun 24;64(26):e202504356. doi: 10.1002/anie.202504356. Epub 2025 May 2.
Arenes are abundantly occurring molecules of significant interest as versatile starting materials in organic reactions. Typically, oxidation of arenes yields planar molecules such as phenols and quinones. However, several iron dependent oxygenases can disrupt the aromaticity of arenes through oxidation and introduce C(sp)─O stereogenic centers, resulting in precious enantioenriched epoxide or diol products. Emulating this enzymatic behavior with synthetic catalysts has met little success until now. Herein we describe a catalytic chemo- and enantioselective dearomative epoxidation of naphthalenes. The singular chemo- and enantioselectivity features of the reaction critically rely on a manganese catalyst that combines electron donating groups and steric demand on the ligand and activates hydrogen peroxide under mild conditions and short reaction times. Assisted with an N-protected amino acid, this catalyst epoxidizes a range of naphthalenes providing chemically versatile diepoxides in moderate to good yields and high levels of enantioselectivity. Straightforward elaboration gives diverse access to densely functionalized 3D structurally rich oxygenated molecules. The reaction constitutes a paradigmatical example of expedient access to stereochemically rich, valuable oxygenated molecules from readily available feedstocks, enabled by highly reactive yet selective biologically inspired oxidation catalysts.
芳烃是大量存在的分子,作为有机反应中通用的起始原料具有重要意义。通常,芳烃的氧化会产生平面分子,如苯酚和醌类。然而,几种铁依赖性加氧酶可以通过氧化破坏芳烃的芳香性,并引入C(sp)─O立体中心,从而得到珍贵的对映体富集的环氧化物或二醇产物。到目前为止,用合成催化剂模拟这种酶促行为几乎没有成功。在此,我们描述了萘的催化化学和对映选择性脱芳环环氧化反应。该反应独特的化学和对映选择性特征关键依赖于一种锰催化剂,该催化剂在配体上结合了供电子基团和空间需求,并在温和条件和短反应时间内活化过氧化氢。在N-保护氨基酸的辅助下,该催化剂使一系列萘环氧化,以中等至良好的产率和高对映选择性提供具有多种化学用途的双环氧化物。直接的衍生化反应为获得结构丰富的密集官能化3D含氧化合物提供了多种途径。该反应是通过高活性但选择性的仿生氧化催化剂,从易得的原料方便地获得立体化学丰富、有价值的含氧化合物的典型例子。