Suppr超能文献

基于地理环境因素的热带河流复杂水-地貌环境下的突发洪水灾害应急救援闪电图的开发。印度。

Development of geo-environmental factors controlled flash flood hazard map for emergency relief operation in complex hydro-geomorphic environment of tropical river, India.

机构信息

Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India.

Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.

出版信息

Environ Sci Pollut Res Int. 2023 Oct;30(49):106951-106966. doi: 10.1007/s11356-022-23441-7. Epub 2022 Oct 13.

Abstract

The occurrences of flash floods in sub-tropical climatic regions like India are ubiquitous phenomena, particularly during the monsoon season. This type of flood occurs within a short period of time and makes it distinctive from all-natural hazards, which causes huge loss of economy and causalities of life. Therefore, its prediction is crucial and one of the challenging tasks for researchers to mitigate this sustainably. Furthermore, identifying flash flood susceptible regions is the foremost responsibility in managing flood events, which helps the local administration take emergency relief operations in flood-prone regions. In September 2021, the flood in the Gandheswari river basin was the most severe compared to the past decade. The occurrences of flash floods in the lower course of the Gandheswari river has been affected riparian habitats rigorously. Thus, in this study, we proposed the bivariate logistic regression (LR) method to delineate this river basin's flash flood hazard (FFH) map. Here, sixteen flood conditioning factors were selected for modeling purposes with the help of a multicollinearity test, and a total of 71 flood points were identified from the historical dataset. The produced result was validated by six distinctive validating techniques, including receiver operating characteristics (ROC) analysis, specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), and F-score. These techniques have shown that present modeling has high predictive performance in both training and testing dataset with the values of ROC (training-0.928, validating-0.892), specificity (training-0.911, validating-0.882), sensitivity (training-0.915, validating-0.885), PPV (training-0.912, validating-0.874), NPV (training-0.91, validating-0.875), and F-score (training-0.92, validating-0.89). Therefore, the proposed method in this and the outcome result will help the disaster manager make proper decisions to mitigate the hazardous situation and take sustainable emergency relief operations.

摘要

在印度等亚热带气候地区,暴洪是一种普遍存在的现象,特别是在季风季节。这种洪水在短时间内发生,与所有自然灾害不同,它会造成巨大的经济损失和生命伤亡。因此,对其进行预测是至关重要的,也是研究人员可持续缓解这一问题的挑战之一。此外,确定易受暴洪影响的地区是管理洪水事件的首要责任,这有助于地方政府在洪水多发地区采取紧急救援行动。2021 年 9 月,甘德沙里河盆地的洪水是过去十年中最严重的一次。甘德沙里河下游暴洪的发生,对河流两岸的生境造成了严重影响。因此,在本研究中,我们提出了二元逻辑回归(LR)方法来划定该河流流域的暴洪灾害(FFH)图。在这里,选择了 16 个洪水条件因素进行建模,借助多重共线性测试,从历史数据集中总共确定了 71 个洪水点。使用六种不同的验证技术,包括接收者操作特征(ROC)分析、特异性、敏感性、阳性预测值(PPV)、阴性预测值(NPV)和 F 分数,对生成的结果进行了验证。这些技术表明,目前的模型在训练和测试数据集都具有很高的预测性能,ROC 的值为 0.928(训练-0.928,验证-0.892),特异性为 0.911(训练-0.911,验证-0.882),敏感性为 0.915(训练-0.915,验证-0.885),PPV 为 0.912(训练-0.912,验证-0.874),NPV 为 0.91(训练-0.91,验证-0.875),F 分数为 0.92(训练-0.92,验证-0.89)。因此,本研究提出的方法和得出的结果将有助于灾害管理者做出适当的决策,以减轻危险局面并采取可持续的紧急救援行动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验