Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.
Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
Mol Cancer. 2022 Oct 13;21(1):199. doi: 10.1186/s12943-022-01641-6.
Chimeric fusion transcription factors are oncogenic hallmarks of several devastating cancer entities including pediatric sarcomas, such as Ewing sarcoma (EwS) and alveolar rhabdomyosarcoma (ARMS). Despite their exquisite specificity, these driver oncogenes have been considered largely undruggable due to their lack of enzymatic activity.Here, we show in the EwS model that - capitalizing on neomorphic DNA-binding preferences - the addiction to the respective fusion transcription factor EWSR1-FLI1 can be leveraged to express therapeutic genes.We genetically engineered a de novo enhancer-based, synthetic and highly potent expression cassette that can elicit EWSR1-FLI1-dependent expression of a therapeutic payload as evidenced by episomal and CRISPR-edited genomic reporter assays. Combining in silico screens and immunohistochemistry, we identified GPR64 as a highly specific cell surface antigen for targeted transduction strategies in EwS. Functional experiments demonstrated that anti-GPR64-pseudotyped lentivirus harboring our expression cassette can specifically transduce EwS cells to promote the expression of viral thymidine kinase sensitizing EwS for treatment to otherwise relatively non-toxic (Val)ganciclovir and leading to strong anti-tumorigenic, but no adverse effects in vivo. Further, we prove that similar vector designs can be applied in PAX3-FOXO1-driven ARMS, and to express immunomodulatory cytokines, such as IL-15 and XCL1, in tumor entities typically considered to be immunologically 'cold'.Collectively, these results generated in pediatric sarcomas indicate that exploiting, rather than suppressing, the neomorphic functions of chimeric transcription factors may open inroads to innovative and personalized therapies, and that our highly versatile approach may be translatable to other cancers addicted to oncogenic transcription factors with unique DNA-binding properties.
嵌合融合转录因子是包括小儿肉瘤在内的几种破坏性癌症实体的致癌标志,如尤文肉瘤(EwS)和肺泡横纹肌肉瘤(ARMS)。尽管它们具有极高的特异性,但由于缺乏酶活性,这些驱动致癌基因被认为在很大程度上是不可成药的。在这里,我们在 EwS 模型中表明——利用新形成的 DNA 结合偏好——对各自融合转录因子 EWSR1-FLI1 的依赖可以被利用来表达治疗基因。我们通过基因工程构建了一个基于从头增强子的、合成的、高效的表达盒,可以引发 EWSR1-FLI1 依赖性治疗有效载荷的表达,这一点通过游离体和 CRISPR 编辑基因组报告基因检测得到证实。通过计算机筛选和免疫组织化学,我们确定了 GPR64 作为 EwS 靶向转导策略的高度特异性细胞表面抗原。功能实验表明,携带我们表达盒的抗 GPR64-假型慢病毒可以特异性转导 EwS 细胞,以促进病毒胸苷激酶的表达,使 EwS 对治疗药物(Val)更昔洛韦敏感,从而在体内产生强烈的抗肿瘤作用,但没有不良反应。此外,我们证明类似的载体设计可以应用于 PAX3-FOXO1 驱动的 ARMS,并在肿瘤实体中表达免疫调节细胞因子,如 IL-15 和 XCL1,这些肿瘤实体通常被认为是免疫“冷”的。总之,这些在小儿肉瘤中产生的结果表明,利用而不是抑制嵌合转录因子的新形成功能可能为创新和个性化治疗开辟途径,并且我们的高度通用方法可能可转化为依赖具有独特 DNA 结合特性的致癌转录因子的其他癌症。