Gryder Berkley E, Yohe Marielle E, Chou Hsien-Chao, Zhang Xiaohu, Marques Joana, Wachtel Marco, Schaefer Beat, Sen Nirmalya, Song Young, Gualtieri Alberto, Pomella Silvia, Rota Rossella, Cleveland Abigail, Wen Xinyu, Sindiri Sivasish, Wei Jun S, Barr Frederic G, Das Sudipto, Andresson Thorkell, Guha Rajarshi, Lal-Nag Madhu, Ferrer Marc, Shern Jack F, Zhao Keji, Thomas Craig J, Khan Javed
Genetics Branch, NCI, NIH, Bethesda, Maryland.
Pediatric Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
Cancer Discov. 2017 Aug;7(8):884-899. doi: 10.1158/2159-8290.CD-16-1297. Epub 2017 Apr 26.
Alveolar rhabdomyosarcoma is a life-threatening myogenic cancer of children and adolescent young adults, driven primarily by the chimeric transcription factor PAX3-FOXO1. The mechanisms by which PAX3-FOXO1 dysregulates chromatin are unknown. We find PAX3-FOXO1 reprograms the -regulatory landscape by inducing super enhancers. PAX3-FOXO1 uses super enhancers to set up autoregulatory loops in collaboration with the master transcription factors MYOG, MYOD, and MYCN. This myogenic super enhancer circuitry is consistent across cell lines and primary tumors. Cells harboring the fusion gene are selectively sensitive to small-molecule inhibition of protein targets induced by, or bound to, PAX3-FOXO1-occupied super enhancers. Furthermore, PAX3-FOXO1 recruits and requires the BET bromodomain protein BRD4 to function at super enhancers, resulting in a complete dependence on BRD4 and a significant susceptibility to BRD inhibition. These results yield insights into the epigenetic functions of PAX3-FOXO1 and reveal a specific vulnerability that can be exploited for precision therapy. PAX3-FOXO1 drives pediatric fusion-positive rhabdomyosarcoma, and its chromatin-level functions are critical to understanding its oncogenic activity. We find that PAX3-FOXO1 establishes a myoblastic super enhancer landscape and creates a profound subtype-unique dependence on BET bromodomains, the inhibition of which ablates PAX3-FOXO1 function, providing a mechanistic rationale for exploring BET inhibitors for patients bearing PAX-fusion rhabdomyosarcoma. .
肺泡横纹肌肉瘤是一种危及儿童和青少年生命的肌源性癌症,主要由嵌合转录因子PAX3 - FOXO1驱动。PAX3 - FOXO1失调染色质的机制尚不清楚。我们发现PAX3 - FOXO1通过诱导超级增强子来重新编程调控景观。PAX3 - FOXO1利用超级增强子与主要转录因子MYOG、MYOD和MYCN协同建立自调控回路。这种肌源性超级增强子电路在细胞系和原发性肿瘤中是一致的。携带融合基因的细胞对由PAX3 - FOXO1占据的超级增强子诱导或与之结合的蛋白质靶点的小分子抑制具有选择性敏感性。此外,PAX3 - FOXO1招募并需要BET溴结构域蛋白BRD4在超级增强子处发挥作用,导致对BRD4的完全依赖以及对BRD抑制的显著敏感性。这些结果为PAX3 - FOXO1的表观遗传功能提供了见解,并揭示了一种可用于精准治疗的特定脆弱性。PAX3 - FOXO1驱动小儿融合阳性横纹肌肉瘤,其染色质水平的功能对于理解其致癌活性至关重要。我们发现PAX3 - FOXO1建立了成肌细胞超级增强子景观,并对BET溴结构域产生了深刻的亚型独特依赖性,抑制BET溴结构域可消除PAX3 - FOXO1功能,为探索PAX融合横纹肌肉瘤患者的BET抑制剂提供了机制依据。