Suppr超能文献

使用计算化学定义植物木葡聚糖内切糖基转移酶的受体底物结合特异性。

Definition of the Acceptor Substrate Binding Specificity in Plant Xyloglucan Endotransglycosylases Using Computational Chemistry.

机构信息

Institute of Chemistry, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia.

Jiangsu Collaborative Innovation Centre for Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an 223300, China.

出版信息

Int J Mol Sci. 2022 Oct 5;23(19):11838. doi: 10.3390/ijms231911838.

Abstract

Xyloglucan endotransglycosylases (XETs) play key roles in the remodelling and reconstruction of plant cell walls. These enzymes catalyse homo-transglycosylation reactions with xyloglucan-derived donor and acceptor substrates and hetero-transglycosylation reactions with a variety of structurally diverse polysaccharides. In this work, we describe the basis of acceptor substrate binding specificity in non-specific (TmXET6.3) and specific x (PttXET16A) XETs, using molecular docking and molecular dynamics (MD) simulations combined with binding free energy calculations. The data indicate that the enzyme-donor (xyloglucan heptaoligosaccharide or XG-OS7)/acceptor complexes with the linear acceptors, where a backbone consisted of glucose (Glc) moieties linked via (1,4)- or (1,3)-β-glycosidic linkages, were bound stably in the active sites of TmXET6.3 and PttXET16A. Conversely, the acceptors with the (1,6)-β-linked Glc moieties were bound stably in TmXET6.3 but not in PttXET16A. When in the (1,4)-β-linked Glc containing acceptors, the saccharide moieties were replaced with mannose or xylose, they bound stably in TmXET6.3 but lacked stability in PttXET16A. MD simulations of the XET-donor/acceptor complexes with acceptors derived from (1,4;1,3)-β-glucans highlighted the importance of (1,3)-β-glycosidic linkages and side chain positions in the acceptor substrates. Our findings explain the differences in acceptor binding specificity between non-specific and specific XETs and associate theoretical to experimental data.

摘要

木葡聚糖内转糖基酶(XETs)在植物细胞壁的重塑和重建中发挥着关键作用。这些酶催化木葡聚糖衍生供体和受体底物的同型转糖基化反应,以及与各种结构多样的多糖的异型转糖基化反应。在这项工作中,我们使用分子对接和分子动力学(MD)模拟结合结合自由能计算,描述了非特异性(TmXET6.3)和特异性(PttXET16A)XET 中受体底物结合特异性的基础。数据表明,酶-供体(木葡聚糖七糖或 XG-OS7)/受体复合物与线性受体结合稳定,其中由通过(1,4)-或(1,3)-β-糖苷键连接的葡萄糖(Glc)部分组成的主链,在 TmXET6.3 和 PttXET16A 的活性部位结合稳定。相反,具有(1,6)-β 连接的 Glc 部分的受体在 TmXET6.3 中结合稳定,但在 PttXET16A 中结合不稳定。当在含有(1,4)-β 连接的 Glc 的受体中,糖基部分被甘露糖或木糖取代时,它们在 TmXET6.3 中结合稳定,但在 PttXET16A 中缺乏稳定性。对具有来自(1,4;1,3)-β-葡聚糖的受体的 XET-供体/受体复合物的 MD 模拟突出了受体底物中(1,3)-β-糖苷键和侧链位置的重要性。我们的研究结果解释了非特异性和特异性 XET 之间受体结合特异性的差异,并将理论与实验数据联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e664/9569819/f7868d6855e9/ijms-23-11838-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验