Centre for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.
Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 842 15, Bratislava, Slovakia.
Plant Mol Biol. 2019 May;100(1-2):181-197. doi: 10.1007/s11103-019-00852-8. Epub 2019 Mar 13.
The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these enzymes operate uniquely on cellulose-xyloglucan networks. Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of complete cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and unglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-β-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-β-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-β-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-β-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-β-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and the incidence of investigated residues in other members of the GH16 family suggest that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.
木葡聚糖糖基转移酶(XET)(EC 2.4.1.207)在疏松和重新排列纤维素-木葡聚糖网络方面发挥着核心作用,人们认为该网络是植物细胞壁的主要承重结构成分。通过对完整 cDNA 的快速 cDNA 末端扩增进行核苷酸序列分析,推导出了来自矮牵牛(Tropaeolum majus)的成熟 TmXET6.3 的序列(280 个残基),该序列基于胰蛋白酶和糜蛋白酶肽序列。部分纯化的在毕赤酵母中表达的 TmXET6.3 以 N-糖基化和非糖基化形式存在。对 TmXET6.3 的异型转移糖基化活性进行定量分析表明,(1,3;1,4)-、(1,6)-和(1,4)-β-D-葡萄糖低聚糖是首选的受体底物,而(1,4)-β-D-木低聚糖以及阿拉伯糖木聚糖和葡甘露聚糖低聚糖则不太受欢迎。TmXET6.3 的 3D 模型以及对 GH16 家族中鉴定和推定的植物木葡聚糖内切糖基转移酶(XET)/水解酶(XEH)的生物信息学分析表明,H94、A104、Q108、K234 和 K237 是支撑 TmXET6.3 受体底物特异性的关键残基。与野生型酶相比,单一的 Q108R 和 K237T,以及双-K234T/K237T 和三-H94Q/A104D/Q108R 变体对木葡聚糖和(1,4)-β-D-葡萄糖低聚糖具有增强的异型转移糖基化活性,而对(1,3;1,4)-和(1,6)-β-D-葡萄糖低聚糖的活性则受到抑制;H94Q 变体将木葡聚糖掺入(1,4)-β-D-葡萄糖低聚糖的作用受到的影响最大。这里呈现的非特异性 TmXET6.3 的结构和生化数据扩展了经典的 XET 反应机制,这些酶在植物细胞壁中就是通过该机制发挥作用的。对 TmXET6.3 转移糖基化活性的评估以及 GH16 家族其他成员中研究残基的出现表明,植物 XET 酶具有广泛的受体底物特异性,其广泛程度可能超出预期。