Suppr超能文献

基于纳米锥阵列的铂铱氧化物神经微电极:结构、电化学、耐久性及生物相容性研究

Nanocone-Array-Based Platinum-Iridium Oxide Neural Microelectrodes: Structure, Electrochemistry, Durability and Biocompatibility Study.

作者信息

Zeng Qi, Yu Shoujun, Fan Zihui, Huang Yubin, Song Bing, Zhou Tian

机构信息

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China.

出版信息

Nanomaterials (Basel). 2022 Oct 1;12(19):3445. doi: 10.3390/nano12193445.

Abstract

Neural interfaces provide a window for bio-signal modulation and recording with the assistance of neural microelectrodes. However, shrinking the size of electrodes results in high electrochemical impedance and low capacitance, thus limiting the stimulation/recording efficiency. In order to achieve critical stability and low power consumption, here, nanocone-shaped platinum (Pt) with an extensive surface area is proposed as an adhesive layer on a bare Pt substrate, followed by the deposition of a thin layer of iridium oxide (IrO) to fabricate high-performance nanocone-array-based Pt-IrO neural microelectrodes (200 μm in diameter). A uniform nanocone-shaped Pt with significant roughness is created via controlling the ratio of NH and Pt ions in the electrolyte, which can be widely applicable for batch production on multichannel flexible microelectrode arrays (fMEAs) and various substrates with different dimensions. The Pt-IrO nanocomposite-coated microelectrode presents a significantly low impedance down to 0.72 ± 0.04 Ω cm at 1 kHz (reduction of ~92.95%). The cathodic charge storage capacity (CSC) and charge injection capacity (CIC) reaches up to 52.44 ± 2.53 mC cm and 4.39 ± 0.36 mC cm, respectively. Moreover, superior chronic stability and biocompatibility are also observed. The modified microelectrodes significantly enhance the adhesion of microglia, the major immune cells in the central nervous system. Therefore, such a coating strategy presents great potential for biomedical and other practical applications.

摘要

神经接口在神经微电极的辅助下为生物信号调制和记录提供了一个窗口。然而,电极尺寸的缩小会导致高电化学阻抗和低电容,从而限制了刺激/记录效率。为了实现关键的稳定性和低功耗,在此,提出将具有大面积的纳米锥形铂(Pt)作为裸Pt基板上的粘附层,随后沉积一层氧化铱(IrO)以制造基于纳米锥阵列的高性能Pt-IrO神经微电极(直径200μm)。通过控制电解液中NH和Pt离子的比例,可制备出具有显著粗糙度的均匀纳米锥形Pt,其可广泛应用于多通道柔性微电极阵列(fMEA)以及不同尺寸的各种基板上的批量生产。涂覆有Pt-IrO纳米复合材料的微电极在1kHz时呈现出低至0.72±0.04Ω·cm的显著低阻抗(降低了约92.95%)。阴极电荷存储容量(CSC)和电荷注入容量(CIC)分别达到52.44±2.53mC/cm²和4.39±0.36mC/cm²。此外,还观察到了优异的长期稳定性和生物相容性。修饰后的微电极显著增强了中枢神经系统中主要免疫细胞小胶质细胞的粘附。因此,这种涂层策略在生物医学和其他实际应用中具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0578/9565584/99a60c332b60/nanomaterials-12-03445-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验