de Moraes Segundo João de Deus Pereira, Constantino Jamilly Salustiano Ferreira, Calais Guilherme Bedeschi, de Moura Junior Celso Fidelis, de Moraes Maria Oneide Silva, da Fonseca Jéssica Heline Lopes, Tsukamoto Junko, Monteiro Rodolpho Ramilton de Castro, Andrade Fábia Karine, d'Ávila Marcos Akira, Arns Clarice Weis, Beppu Marisa Masumi, Vieira Rodrigo Silveira
Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60455-760, Brazil.
Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, Brazil.
Polymers (Basel). 2022 Oct 4;14(19):4157. doi: 10.3390/polym14194157.
Electrospinning technology was used to produced polyvinylpyrrolidone (PVP)-copper salt composites with structural differences, and their virucidal activity against coronavirus was investigated. The solutions were prepared with 20, 13.3, 10, and 6.6% / PVP containing 3, 1.0, 0.6, and 0.2% / Cu (II), respectively. The rheological properties and electrical conductivity contributing to the formation of the morphologies of the composite materials were observed by scanning electron microscopy (SEM). SEM images revealed the formation of electrospun PVP-copper salt ultrafine composite fibers (0.80 ± 0.35 µm) and electrosprayed PVP-copper salt composite microparticles (1.50 ± 0.70 µm). Energy-dispersive X-ray spectroscopy (EDS) evidenced the incorporation of copper into the produced composite materials. IR spectra confirmed the chemical composition and showed an interaction of Cu (II) ions with oxygen in the PVP resonant ring. Virucidal composite fibers inactivated 99.999% of coronavirus within 5 min of contact time, with moderate cytotoxicity to L929 cells, whereas the virucidal composite microparticles presented with a virucidal efficiency of 99.999% within 1440 min of exposure, with low cytotoxicity to L929 cells (mouse fibroblast). This produced virucidal composite materials have the potential to be applied in respirators, personal protective equipment, self-cleaning surfaces, and to fabric coat personal protective equipment against SARS-CoV-2, viral outbreaks, or pandemics.
采用静电纺丝技术制备了具有结构差异的聚乙烯吡咯烷酮(PVP)-铜盐复合材料,并研究了其对冠状病毒的杀病毒活性。分别用含3%、1.0%、0.6%和0.2% Cu(II)的20%、13.3%、10%和6.6%的PVP制备溶液。通过扫描电子显微镜(SEM)观察了有助于复合材料形态形成的流变学性质和电导率。SEM图像显示形成了静电纺丝的PVP-铜盐超细复合纤维(0.80±0.35 µm)和电喷雾的PVP-铜盐复合微粒(1.50±0.70 µm)。能量色散X射线光谱(EDS)证明铜已掺入所制备的复合材料中。红外光谱证实了化学成分,并显示了Cu(II)离子与PVP共振环中的氧之间的相互作用。杀病毒复合纤维在接触5分钟内可使99.999%的冠状病毒失活,对L929细胞具有中等细胞毒性,而杀病毒复合微粒在暴露1440分钟内的杀病毒效率为99.999%,对L929细胞(小鼠成纤维细胞)具有低细胞毒性。所制备的杀病毒复合材料有潜力应用于呼吸器、个人防护装备、自清洁表面,并用于织物涂层个人防护装备以对抗SARS-CoV-2、病毒爆发或大流行。