Suppr超能文献

能量信号的二维变换用于能量分解。

2D Transformations of Energy Signals for Energy Disaggregation.

机构信息

School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK.

Department of Power Electronics, BMW AG, 80788 Munich, Germany.

出版信息

Sensors (Basel). 2022 Sep 22;22(19):7200. doi: 10.3390/s22197200.

Abstract

The aim of Non-Intrusive Load Monitoring is to estimate the energy consumption of individual electrical appliances by disaggregating the overall power consumption that has been sampled from a smart meter at a house or commercial/industrial building. Last decade's developments in deep learning and the utilization of Convolutional Neural Networks have improved disaggregation accuracy significantly, especially when utilizing two-dimensional signal representations. However, converting time series' to two-dimensional representations is still an open challenge, and it is not clear how it influences the performance of the energy disaggregation. Therefore, in this article, six different two-dimensional representation techniques are compared in terms of performance, runtime, influence on sampling frequency, and robustness towards Gaussian white noise. The evaluation results show an advantage of two-dimensional imaging techniques over univariate and multivariate features. In detail, the evaluation results show that: first, the active and reactive power-based signatures double Fourier based signatures, as well as outperforming most of the other approaches for low levels of noise. Second, while current and voltage signatures are outperformed at low levels of noise, they perform best under high noise conditions and show the smallest decrease in performance with increasing noise levels. Third, the effect of the sampling frequency on the energy disaggregation performance for time series imaging is most prominent up to 1.2 kHz, while, above 1.2 kHz, no significant improvements in terms of performance could be observed.

摘要

非侵入式负载监测的目的是通过从住宅或商业/工业建筑的智能电表中采样的总功耗来估计各个电器的能耗。过去十年深度学习的发展和卷积神经网络的应用极大地提高了去卷积的准确性,特别是在利用二维信号表示时。然而,将时间序列转换为二维表示仍然是一个开放的挑战,并且不清楚它如何影响能量去卷积的性能。因此,在本文中,六种不同的二维表示技术在性能、运行时间、对采样频率的影响以及对高斯白噪声的鲁棒性方面进行了比较。评估结果表明二维成像技术比单变量和多变量特征具有优势。具体而言,评估结果表明:首先,基于有功和无功功率的特征优于基于双傅里叶的特征,并且在低噪声水平下优于大多数其他方法。其次,虽然电流和电压特征在低噪声水平下表现更好,但它们在高噪声条件下表现最佳,并且随着噪声水平的增加,性能下降最小。第三,时间序列成像对采样频率对能量去卷积性能的影响在 1.2 kHz 之前最为显著,而在 1.2 kHz 以上,在性能方面观察不到显著的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd29/9572737/abbefa66a3c4/sensors-22-07200-g001.jpg

相似文献

10
Neural Fourier Energy Disaggregation.神经傅里叶能量分解。
Sensors (Basel). 2022 Jan 9;22(2):473. doi: 10.3390/s22020473.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验