Department of Computer Graphics, Vision and Digital Systems, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
Department of Algorithmics and Software, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.
Sensors (Basel). 2022 Sep 23;22(19):7230. doi: 10.3390/s22197230.
For the interacting with real world, augmented reality devices need lightweight yet reliable methods for recognition and identification of physical objects. In that regard, promising possibilities are offered by supporting computer vision with 2D barcode tags. These tags, as high contrast and visually well-defined objects, can be used for finding fiducial points in the space or to identify physical items. Currently, QR code readers have certain demands towards the size and visibility of the codes. However, the increase of resolution of built-in cameras makes it possible to identify smaller QR codes in the scene. On the other hand, growing resolutions cause the increase to the computational effort of tag location. Therefore, resolution reduction in decoders is a common trade-off between processing time and recognition capabilities. In this article, we propose the simulation method of QR codes scanning near limits that stem from Shannon's theorem. We analyze the efficiency of three publicly available decoders versus different size-to-sampling ratios (scales) and MTF characteristics of the image capture subsystem. The MTF we used is based on the characteristics of real devices, and it was modeled using Gaussian low-pass filtering. We tested two tasks-decoding and locating-and-decoding. The findings of the work are several-fold. Among others, we identified that, for practical decoding, the QR-code module should be no smaller than 3-3.5 pixels, regardless of MTF characteristics. We confirmed the superiority of Zbar in practical tasks and the worst recognition capabilities of OpenCV. On the other hand, we identified that, for borderline cases, or even below Nyquist limit where the other decoders fail, OpenCV is still capable of decoding some information.
对于与现实世界交互,增强现实设备需要轻量级但可靠的方法来识别和标识物理对象。在这方面,支持计算机视觉的二维条码标签提供了有前途的可能性。这些标签作为高对比度和视觉上定义明确的对象,可以用于在空间中找到基准点或识别物理物品。目前,QR 码读取器对代码的大小和可见性有一定的要求。然而,内置摄像头分辨率的提高使得在场景中识别更小的 QR 码成为可能。另一方面,分辨率的提高导致标签定位的计算工作量增加。因此,解码器中的分辨率降低是处理时间和识别能力之间的常见权衡。在本文中,我们提出了 QR 码扫描接近香农定理限制的模拟方法。我们分析了三种公开可用的解码器在不同的大小与采样比(比例)和图像采集子系统的调制传递函数(MTF)特性下的效率。我们使用的 MTF 基于真实设备的特性,并使用高斯低通滤波进行建模。我们测试了两个任务——解码和定位-解码。该工作的发现有几个方面。除其他外,我们确定,对于实际解码,无论 MTF 特性如何,QR 码模块的大小不应小于 3-3.5 像素。我们确认了 Zbar 在实际任务中的优越性和 OpenCV 最差的识别能力。另一方面,我们确定,对于边界情况,甚至低于其他解码器失败的奈奎斯特极限,OpenCV 仍然能够解码一些信息。