Suppr超能文献

面向边缘雾云系统中医疗物联网的低延迟、节能任务调度框架

A Novel Low-Latency and Energy-Efficient Task Scheduling Framework for Internet of Medical Things in an Edge Fog Cloud System.

机构信息

Department of Computer Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, Ma'an 71111, Jordan.

College of Computer Science and Information Technology, University of Anbar, Ramadi 31001, Iraq.

出版信息

Sensors (Basel). 2022 Jul 16;22(14):5327. doi: 10.3390/s22145327.

Abstract

In healthcare, there are rapid emergency response systems that necessitate real-time actions where speed and efficiency are critical; this may suffer as a result of cloud latency because of the delay caused by the cloud. Therefore, fog computing is utilized in real-time healthcare applications. There are still limitations in response time, latency, and energy consumption. Thus, a proper fog computing architecture and good task scheduling algorithms should be developed to minimize these limitations. In this study, an Energy-Efficient Internet of Medical Things to Fog Interoperability of Task Scheduling (EEIoMT) framework is proposed. This framework schedules tasks in an efficient way by ensuring that critical tasks are executed in the shortest possible time within their deadline while balancing energy consumption when processing other tasks. In our architecture, Electrocardiogram (ECG) sensors are used to monitor heart health at home in a smart city. ECG sensors send the sensed data continuously to the ESP32 microcontroller through Bluetooth (BLE) for analysis. ESP32 is also linked to the fog scheduler via Wi-Fi to send the results data of the analysis (tasks). The appropriate fog node is carefully selected to execute the task by giving each node a special weight, which is formulated on the basis of the expected amount of energy consumed and latency in executing this task and choosing the node with the lowest weight. Simulations were performed in iFogSim2. The simulation outcomes show that the suggested framework has a superior performance in reducing the usage of energy, latency, and network utilization when weighed against CHTM, LBS, and FNPA models.

摘要

在医疗保健领域,存在着需要实时行动的快速应急响应系统,其中速度和效率至关重要;由于云延迟导致的延迟,这可能会受到影响。因此,雾计算被用于实时医疗保健应用。响应时间、延迟和能耗仍然存在限制。因此,应该开发适当的雾计算架构和良好的任务调度算法,以最小化这些限制。在这项研究中,提出了一种节能的物联网到雾互操作性的任务调度(EEIoMT)框架。该框架通过确保关键任务在其截止日期内尽可能短的时间内执行,同时平衡处理其他任务时的能耗,以高效的方式调度任务。在我们的架构中,心电图(ECG)传感器用于在家中监测智慧城市的心脏健康。ECG 传感器通过蓝牙(BLE)将感测数据连续发送到 ESP32 微控制器进行分析。ESP32 还通过 Wi-Fi 与雾调度器连接,以发送分析结果数据(任务)。通过为每个节点分配一个特殊的权重,仔细选择适当的雾节点来执行任务,该权重是根据执行此任务预计消耗的能量和延迟以及选择具有最低权重的节点来制定的。在 iFogSim2 中进行了模拟。模拟结果表明,与 CHTM、LBS 和 FNPA 模型相比,所提出的框架在减少能耗、延迟和网络利用率方面具有优越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b103/9319030/d7cebcbf7fe2/sensors-22-05327-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验