Suppr超能文献

基于时间卷积神经网络和变分模态分解的风力短期预测方法研究。

Research on Wind Power Short-Term Forecasting Method Based on Temporal Convolutional Neural Network and Variational Modal Decomposition.

机构信息

College of Mechanical and Electrical Engineering, Hunan College of Information, Changsha 410200, China.

Department of Electrical Engineering, National Ilan University, Yilan 260007, Taiwan.

出版信息

Sensors (Basel). 2022 Sep 29;22(19):7414. doi: 10.3390/s22197414.

Abstract

Wind energy reserves are large worldwide, but their randomness and volatility hinder wind power development. To promote the utilization of wind energy and improve the accuracy of wind power prediction, we comprehensively consider the influence of wind farm environmental factors and historical power on wind power generation. This paper presents a short-term wind power prediction model based on time convolution neural network (TCN) and variational mode decomposition (VMD). First, due to the non-smooth characteristics of the wind farm environmental data, this paper uses VMD to decompose the data of each environmental variable to reduce the influence of the random noise of the data on the prediction model. Then, the modal components with rich feature information are extracted according to the Pearson correlation coefficient and Maximal information coefficient (MIC) between each modal component and the power. Thirdly, a prediction model based on TCN is trained according to the preferred modal components and historical power data to achieve accurate short-term wind power prediction. In this paper, the model is trained and tested with a public wind power dataset provided by the Spanish Power Company. The simulation results show that the model has higher prediction accuracy, with MAPE and R are 2.79% and 0.9985, respectively. Compared with the conventional long short-term neural network (LSTM) model, the model in this paper has good prediction accuracy and robustness.

摘要

风能储量在全球范围内很大,但它们的随机性和波动性阻碍了风力发电的发展。为了促进风能的利用和提高风力发电预测的准确性,我们综合考虑了风电场环境因素和历史功率对风力发电的影响。本文提出了一种基于时间卷积神经网络(TCN)和变分模态分解(VMD)的短期风力预测模型。首先,由于风电场环境数据的非平稳特性,本文使用 VMD 对每个环境变量的数据进行分解,以减少数据随机噪声对预测模型的影响。然后,根据每个模态分量与功率之间的 Pearson 相关系数和最大信息系数(MIC),提取具有丰富特征信息的模态分量。第三,根据优选的模态分量和历史功率数据,基于 TCN 训练预测模型,以实现准确的短期风力预测。本文使用西班牙电力公司提供的公共风力数据集对模型进行了训练和测试。仿真结果表明,该模型具有较高的预测精度,其平均绝对百分比误差(MAPE)和决定系数(R)分别为 2.79%和 0.9985。与传统的长短时记忆神经网络(LSTM)模型相比,本文提出的模型具有良好的预测精度和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b0/9572752/736aecb22c29/sensors-22-07414-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验