Ji Xiaotong, Liu Dan, Xiong Ping
State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China.
State Grid Hubei Electric Power Research Institute, Wuhan 430077, China.
Math Biosci Eng. 2022 Sep 14;19(12):13399-13420. doi: 10.3934/mbe.2022627.
The high accuracy of short-term power load forecasting has a pivotal role in helping power companies to construct reasonable production scheduling plans and avoid resource waste. In this paper, a multi-model short-term power load prediction method based on Variational mode decomposition (VMD)-improved whale optimization algorithm (IWOA)-wavelet temporal convolutional network (WTCN)-bidirectional gated recurrent unit (BiGRU)-attention and CatBoost model fusion is proposed. First, VMD was employed to decompose the load data into different intrinsic mode functions. Second, a WTCN was utilized to extract the load data features, and multi-dimensional feature factors were integrated into the BiGRU network for model training. Moreover, an attention mechanism was added to enhance the influence degree of important information. The WTCN-BiGRU-attention model is improved by the WOA algorithm to optimize the hyperparameters of the network. Finally, the model was fused with the predicted data of the CatBoost network by the mean absolute percentage error-reciprocal weight (MAPE-RW) algorithm to construct the best fusion model. Compared with other forecasting models, the proposed multi-model fusion method has higher accuracy in short-term power load forecasting using the public data set for an Australian region.
短期电力负荷预测的高精度对于帮助电力公司制定合理的生产调度计划和避免资源浪费具有关键作用。本文提出了一种基于变分模态分解(VMD)-改进鲸鱼优化算法(IWOA)-小波时间卷积网络(WTCN)-双向门控循环单元(BiGRU)-注意力机制和CatBoost模型融合的多模型短期电力负荷预测方法。首先,采用VMD将负荷数据分解为不同的本征模态函数。其次,利用WTCN提取负荷数据特征,并将多维度特征因子整合到BiGRU网络中进行模型训练。此外,添加注意力机制以增强重要信息的影响程度。通过WOA算法对WTCN-BiGRU-注意力模型进行改进,以优化网络的超参数。最后,通过平均绝对百分比误差-倒数权重(MAPE-RW)算法将该模型与CatBoost网络的预测数据进行融合,构建最佳融合模型。与其他预测模型相比,所提出的多模型融合方法在使用澳大利亚某地区公共数据集进行短期电力负荷预测时具有更高的精度。