School of Software, Northwestern Polytechnical University, Xi'an 710129, China.
Sensors (Basel). 2022 Oct 9;22(19):7640. doi: 10.3390/s22197640.
Traditional deep learning methods such as convolutional neural networks (CNN) have a high requirement for the number of labeled samples. In some cases, the cost of obtaining labeled samples is too high to obtain enough samples. To solve this problem, few-shot learning (FSL) is used. Currently, typical FSL methods work well on coarse-grained image data, but not as well on fine-grained image classification work, as they cannot properly assess the in-class similarity and inter-class difference of fine-grained images. In this work, an FSL framework based on graph neural network (GNN) is proposed for fine-grained image classification. Particularly, we use the information transmission of GNN to represent subtle differences between different images. Moreover, feature extraction is optimized by the method of meta-learning to improve the classification. The experiments on three datasets (CIFAR-100, CUB, and DOGS) have shown that the proposed method yields better performances. This indicates that the proposed method is a feasible solution for fine-grained image classification with FSL.
传统的深度学习方法,如卷积神经网络(CNN),对标记样本的数量要求较高。在某些情况下,获取标记样本的成本太高,无法获得足够的样本。为了解决这个问题,使用了少样本学习(FSL)。目前,典型的 FSL 方法在粗粒度图像数据上效果很好,但在细粒度图像分类工作上效果不佳,因为它们不能正确评估细粒度图像的类内相似性和类间差异。在这项工作中,提出了一种基于图神经网络(GNN)的 FSL 框架用于细粒度图像分类。特别地,我们使用 GNN 的信息传递来表示不同图像之间的细微差异。此外,通过元学习方法优化特征提取以提高分类性能。在三个数据集(CIFAR-100、CUB 和 DOGS)上的实验表明,所提出的方法具有更好的性能。这表明,所提出的方法是 FSL 进行细粒度图像分类的一种可行解决方案。