Suppr超能文献

超越冠状动脉CT血管造影:CT血流储备分数与灌注

[Beyond Coronary CT Angiography: CT Fractional Flow Reserve and Perfusion].

作者信息

Kim Moon Young, Yang Dong Hyun, Choo Ki Seok, Lee Whal

出版信息

Taehan Yongsang Uihakhoe Chi. 2022 Jan;83(1):3-27. doi: 10.3348/jksr.2021.0177. Epub 2022 Jan 21.

Abstract

Cardiac CT has been proven to provide diagnostic and prognostic evaluation of coronary artery disease for cardiovascular risk stratification and treatment decision-making based on rapid technological development and various research evidence. Coronary CT angiography has emerged as a gateway test for coronary artery disease that can reduce invasive angiography due to its high negative predictive value, but the diagnostic specificity is relatively low. However, coronary CT angiography is likely to overcome its limitations through functional evaluation to identify the hemodynamic significance of coronary artery disease by analyzing myocardial perfusion and fractional flow reserve through cardiac CT. Recently, studies have been actively conducted to incorporate artificial intelligence to make this more objective and reproducible. In this review, functional imaging techniques of cardiac computerized tomography are explored.

摘要

基于快速的技术发展和各种研究证据,心脏CT已被证明可为冠状动脉疾病提供诊断和预后评估,以进行心血管风险分层和治疗决策。冠状动脉CT血管造影已成为冠状动脉疾病的一项入门检查,由于其较高的阴性预测价值,可减少侵入性血管造影,但诊断特异性相对较低。然而,冠状动脉CT血管造影可能通过功能评估来克服其局限性,即通过心脏CT分析心肌灌注和血流储备分数,以确定冠状动脉疾病的血流动力学意义。最近,人们积极开展研究,将人工智能纳入其中,以使这一过程更加客观和可重复。在这篇综述中,探讨了心脏计算机断层扫描的功能成像技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2872/9238199/83fb93142650/jksr-83-3-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验