Nguyen Son-Tung, Cuong Pham V, Nguyen Cuong Q, Nguyen Chuong V
Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam.
Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
Phys Chem Chem Phys. 2022 Oct 27;24(41):25144-25150. doi: 10.1039/d2cp03350j.
Stacking different two-dimensional materials to generate a vertical heterostructure has been considered a promising way to obtain the desired properties and improve device performance. Here, in this work, using first principles calculations, we design a vertical heterostructure by stacking graphene (GR) and silicane (SiH) and investigate the electronic properties and electrical contact in the GR/SiH heterostructure as well as the possibility of tuning these properties under an external electric field and vertical strain. The GR/SiH heterostructure is structurally and mechanically stable at the equilibrium interlayer separation. The GR/SiH heterostructure exhibits a p-type Schottky contact with a small Schottky barrier of 0.43 eV, presenting great tunability of the electrical contact from Schottky to Ohmic contact under different conditions. The external electric field not only leads to a transition from the p-type to n-type Schottky contact but also induces a transformation from a Schottky contact to Ohmic one. Furthermore, changing the interlayer separation can be considered a useful tool to regulate the Schottky barriers and electric contact in the GR/SiH heterostructure, which is prominent for constructing electronic devices. Our findings could provide an effective tool for the design of high-performance nanoelectronic devices based on the GR/SiH heterostructure.
堆叠不同的二维材料以生成垂直异质结构被认为是获得所需特性并提高器件性能的一种有前途的方法。在此工作中,我们使用第一性原理计算,通过堆叠石墨烯(GR)和硅烯(SiH)设计了一种垂直异质结构,并研究了GR/SiH异质结构中的电子特性和电接触,以及在外部电场和垂直应变下调节这些特性的可能性。GR/SiH异质结构在平衡层间间距下在结构和力学上是稳定的。GR/SiH异质结构呈现出p型肖特基接触,肖特基势垒小至0.43 eV,在不同条件下电接触从肖特基接触到欧姆接触具有很大的可调性。外部电场不仅导致从p型到n型肖特基接触的转变,还诱导从肖特基接触到欧姆接触的转变。此外,改变层间间距可被视为调节GR/SiH异质结构中肖特基势垒和电接触的有用工具,这对于构建电子器件非常突出。我们的发现可为基于GR/SiH异质结构的高性能纳米电子器件设计提供有效工具。