Suppr超能文献

基于铁-右旋糖酐的催化剂上多个H/Li键的去溶剂化协同作用促进锂-硫级联催化

Desolvation Synergy of Multiple H/Li-Bonds on an Iron-Dextran-Based Catalyst Stimulates Lithium-Sulfur Cascade Catalysis.

作者信息

Li Tingting, Cai Dong, Yang Shuo, Dong Yangyang, Yu Shuang, Liang Ce, Zhou Xuemei, Ge Yongjie, Xiao Kuikui, Nie Huagui, Yang Zhi

机构信息

Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.

College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China.

出版信息

Adv Mater. 2022 Dec;34(51):e2207074. doi: 10.1002/adma.202207074. Epub 2022 Nov 17.

Abstract

Traditional lithium-sulfur battery catalysts are still facing substantial challenges in solving sulfur redox reactions, which involve multistep electron transfer and multiphase transformations. Here, inspired by the combination of iron dextran (INFeD) and ascorbic acid (VC) as a blood tonic for the treatment of anemia, a highly efficient VC@INFeD catalyst is developed in the sulfur cathode, accomplishing the desolvation and enrichment of high-concentration solvated lithium polysulfides at the cathode/electrolyte interface with the assistance of multiple H/Li-bonds and resolving subsequent sulfur transformations through gradient catalysis sites where the INFeD promotes long-chain lithium polysulfide conversions and VC accelerates short-chain lithium polysulfide conversions. Comprehensive characterizations reveal that the VC@INFeD can substantially reduce the energy barrier of each sulfur redox step, inhibit shuttle effects, and endow the lithium-sulfur battery with high sulfur utilization and superior cycling stability even under a high sulfur loading (5.2 mg cm ) and lean electrolyte (electrolyte/sulfur ratio, ≈7 µL mg ) condition.

摘要

传统的锂硫电池催化剂在解决涉及多步电子转移和多相转变的硫氧化还原反应方面仍面临重大挑战。在此,受右旋糖酐铁(INFeD)和抗坏血酸(VC)联合作为治疗贫血的补血剂的启发,在硫阴极中开发了一种高效的VC@INFeD催化剂,借助多个H/Li键实现了高浓度溶剂化多硫化锂在阴极/电解质界面的去溶剂化和富集,并通过梯度催化位点解决后续的硫转化问题,其中INFeD促进长链多硫化锂的转化,VC加速短链多硫化锂的转化。综合表征表明,VC@INFeD可以大幅降低每个硫氧化还原步骤的能垒,抑制穿梭效应,即使在高硫负载(5.2 mg cm )和贫电解质(电解质/硫比,≈7 µL mg )条件下,也能赋予锂硫电池高硫利用率和优异的循环稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验