Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO74605-170, Brazil.
Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia70910-900, Brazil.
J Chem Inf Model. 2022 Dec 26;62(24):6825-6843. doi: 10.1021/acs.jcim.2c00596. Epub 2022 Oct 14.
The Zika virus (ZIKV) is a neurotropic arbovirus considered a global threat to public health. Although there have been several efforts in drug discovery projects for ZIKV in recent years, there are still no antiviral drugs approved to date. Here, we describe the results of a global collaborative crowdsourced open science project, the OpenZika project, from IBM's World Community Grid (WCG), which integrates different computational and experimental strategies for advancing a drug candidate for ZIKV. Initially, molecular docking protocols were developed to identify potential inhibitors of ZIKV NS5 RNA-dependent RNA polymerase (NS5 RdRp), NS3 protease (NS2B-NS3pro), and NS3 helicase (NS3hel). Then, a machine learning (ML) model was built to distinguish active vs inactive compounds for the cytoprotective effect against ZIKV infection. We performed three independent target-based virtual screening campaigns (NS5 RdRp, NS2B-NS3pro, and NS3hel), followed by predictions by the ML model and other filters, and prioritized a total of 61 compounds for further testing in enzymatic and phenotypic assays. This yielded five non-nucleoside compounds which showed inhibitory activity against ZIKV NS5 RdRp in enzymatic assays (IC range from 0.61 to 17 μM). Two compounds thermally destabilized NS3hel and showed binding affinity in the micromolar range ( range from 9 to 35 μM). Moreover, the compounds LabMol-301 inhibited both NS5 RdRp and NS2B-NS3pro (IC of 0.8 and 7.4 μM, respectively) and LabMol-212 thermally destabilized the ZIKV NS3hel (K of 35 μM). Both also protected cells from death induced by ZIKV infection in cell-based assays. However, while eight compounds (including LabMol-301 and LabMol-212) showed a cytoprotective effect and prevented ZIKV-induced cell death, agreeing with our ML model for prediction of this cytoprotective effect, no compound showed a direct antiviral effect against ZIKV. Thus, the new scaffolds discovered here are promising hits for future structural optimization and for advancing the discovery of further drug candidates for ZIKV. Furthermore, this work has demonstrated the importance of the integration of computational and experimental approaches, as well as the potential of large-scale collaborative networks to advance drug discovery projects for neglected diseases and emerging viruses, despite the lack of available direct antiviral activity and cytoprotective effect data, that reflects on the assertiveness of the computational predictions. The importance of these efforts rests with the need to be prepared for future viral epidemic and pandemic outbreaks.
寨卡病毒(ZIKV)是一种神经嗜性虫媒病毒,被认为是全球公共卫生的威胁。尽管近年来在寨卡病毒药物发现项目方面进行了多次努力,但迄今为止仍没有获得批准的抗病毒药物。在这里,我们描述了 IBM 的世界社区网格(WCG)的全球协作众包开放科学项目 OpenZika 项目的结果,该项目整合了不同的计算和实验策略,以推进寨卡病毒候选药物的研发。最初,开发了分子对接方案来鉴定寨卡病毒 NS5 RNA 依赖性 RNA 聚合酶(NS5 RdRp)、NS3 蛋白酶(NS2B-NS3pro)和 NS3 解旋酶(NS3hel)的潜在抑制剂。然后,建立了一个机器学习(ML)模型来区分对寨卡病毒感染具有细胞保护作用的活性和非活性化合物。我们进行了三次独立的基于靶标的虚拟筛选(NS5 RdRp、NS2B-NS3pro 和 NS3hel),然后由 ML 模型和其他过滤器进行预测,并总共优先选择了 61 种化合物进行酶和表型测定。这产生了五种非核苷类化合物,它们在酶测定中显示出对寨卡病毒 NS5 RdRp 的抑制活性(IC 范围为 0.61 至 17 μM)。两种化合物使 NS3hel 热失稳,并在微摩尔范围内显示结合亲和力(范围为 9 至 35 μM)。此外,化合物 LabMol-301 抑制 NS5 RdRp 和 NS2B-NS3pro(IC 分别为 0.8 和 7.4 μM),而化合物 LabMol-212 使 ZIKV NS3hel 热失稳(K 为 35 μM)。两者在细胞测定中都能保护细胞免受寨卡病毒感染引起的死亡。然而,尽管有八种化合物(包括 LabMol-301 和 LabMol-212)显示出细胞保护作用并防止寨卡病毒诱导的细胞死亡,与我们用于预测这种细胞保护作用的 ML 模型一致,但没有一种化合物对寨卡病毒表现出直接的抗病毒作用。因此,这里发现的新支架是未来结构优化和推进寨卡病毒候选药物发现的有希望的候选药物。此外,这项工作证明了整合计算和实验方法的重要性,以及大规模协作网络的潜力,以推进被忽视疾病和新兴病毒的药物发现项目,尽管缺乏可用的直接抗病毒活性和细胞保护作用数据,但这反映了计算预测的自信。这些努力的重要性在于需要为未来的病毒流行和大流行做好准备。