Suppr超能文献

互锁设计、可编程激光制造以及对结构化陶瓷的测试。

Interlocking design, programmable laser manufacturing and testing for architectured ceramics.

作者信息

Yazdani Sarvestani H, Esmail I, Katz Z, Jain S, Sa J H, Backman D, Ashrafi B

机构信息

Aerospace Manufacturing Technology Center, National Research Council Canada, 5145 Decelles Avenue, Montreal, QC, H3T 2B2, Canada.

Structures and Materials Performance Laboratory, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.

出版信息

Sci Rep. 2022 Oct 15;12(1):17330. doi: 10.1038/s41598-022-22250-9.

Abstract

Tough and impact-resistant ceramic systems offer a wide range of remarkable opportunities beyond those offered by the conventional brittle ceramics. However, despite their promise, the availability of traditional manufacturing technique for fabricating such advanced ceramic structures in a highly controllable and scalable manner poses a significant manufacturing bottleneck. In this study, a precise and programmable laser manufacturing system was used to manufacture topologically interlocking ceramics. This manufacturing strategy offers feasible mechanisms for a precise material architecture and quantitative process control, particularly when scalability is considered. An optimized material removal method that approaches near-net shaping was employed to fabricate topologically interlocking ceramic systems (load-carrying assemblies of building blocks interacting by contact and friction) with different architectures (i.e., interlocking angles and building block sizes) subjected to low-velocity impact conditions. These impacts were evaluated using 3D digital image correlation. The optimal interlocked ceramics exhibited a higher deformation (up to 310%) than the other interlocked ones advantageous for flexible protections. Their performance was tuned by controlling the interlocking angle and block size, adjusting the frictional sliding, and minimizing damage to the building blocks. In addition, the developed subtractive manufacturing technique leads to the fabrication of tough, impact-resistant, damage-tolerant ceramic systems with excellent versatility and scalability.

摘要

坚韧且抗冲击的陶瓷系统提供了一系列超越传统脆性陶瓷的显著机遇。然而,尽管它们前景广阔,但以高度可控且可扩展的方式制造此类先进陶瓷结构的传统制造技术的可用性构成了重大的制造瓶颈。在本研究中,使用了一种精确且可编程的激光制造系统来制造拓扑互锁陶瓷。这种制造策略为精确的材料架构和定量过程控制提供了可行的机制,特别是在考虑可扩展性时。采用一种接近净成型的优化材料去除方法,来制造具有不同架构(即互锁角度和积木尺寸)的拓扑互锁陶瓷系统(通过接触和摩擦相互作用的积木承载组件),并使其承受低速冲击条件。使用三维数字图像相关技术对这些冲击进行评估。最佳互锁陶瓷表现出比其他互锁陶瓷更高的变形(高达310%),这有利于柔性防护。通过控制互锁角度和积木尺寸、调整摩擦滑动以及最小化对积木的损伤来调整其性能。此外,所开发的减法制造技术能够制造出具有优异通用性和可扩展性的坚韧、抗冲击、耐损伤的陶瓷系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a9c/9569388/ae6780d846e6/41598_2022_22250_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验