Wu Huaqian, Souedet Nicolas, Jan Caroline, Clouchoux Cédric, Delzescaux Thierry
CEA-CNRS-UMR 9199, MIRCen, Fontenay-aux-Roses, France.
WITSEE, Paris, France.
Comput Biol Med. 2022 Nov;150:106180. doi: 10.1016/j.compbiomed.2022.106180. Epub 2022 Oct 4.
Recent studies have demonstrated the superiority of deep learning in medical image analysis, especially in cell instance segmentation, a fundamental step for many biological studies. However, the excellent performance of the neural networks requires training on large, unbiased dataset and annotations, which is labor-intensive and expertise-demanding. This paper presents an end-to-end framework to automatically detect and segment NeuN stained neuronal cells on histological images using only point annotations. Unlike traditional nuclei segmentation with point annotation, we propose using point annotation and binary segmentation to synthesize pixel-level annotations. The synthetic masks are used as the ground truth to train the neural network, a U-Net-like architecture with a state-of-the-art network, EfficientNet, as the encoder. Validation results show the superiority of our model compared to other recent methods. In addition, we investigated multiple post-processing schemes and proposed an original strategy to convert the probability map into segmented instances using ultimate erosion and dynamic reconstruction. This approach is easy to configure and outperforms other classical post-processing techniques. This work aims to develop a robust and efficient framework for analyzing neurons using optical microscopic data, which can be used in preclinical biological studies and, more specifically, in the context of neurodegenerative diseases. Code is available at: https://github.com/MIRCen/NeuronInstanceSeg.
最近的研究已经证明了深度学习在医学图像分析中的优越性,特别是在细胞实例分割方面,这是许多生物学研究的一个基本步骤。然而,神经网络的出色性能需要在大规模、无偏差的数据集和注释上进行训练,这既耗费人力又需要专业知识。本文提出了一个端到端框架,仅使用点注释就能在组织学图像上自动检测和分割NeuN染色的神经元细胞。与传统的带有点注释的细胞核分割不同,我们建议使用点注释和二值分割来合成像素级注释。合成掩码用作训练神经网络的真实标签,该神经网络是一种类似U-Net的架构,以最先进的网络EfficientNet作为编码器。验证结果表明,与其他近期方法相比,我们的模型具有优越性。此外,我们研究了多种后处理方案,并提出了一种原始策略,即使用终极腐蚀和动态重建将概率图转换为分割实例。这种方法易于配置,并且优于其他经典后处理技术。这项工作旨在开发一个强大而高效的框架,用于使用光学显微镜数据分析神经元,可用于临床前生物学研究,更具体地说,用于神经退行性疾病的背景下。代码可在以下网址获取:https://github.com/MIRCen/NeuronInstanceSeg 。