Suppr超能文献

通过卷积神经网络区分支气管镜观察到的气道解剖位置。

Distinguishing bronchoscopically observed anatomical positions of airway under by convolutional neural network.

作者信息

Chen Chongxiang, Herth Felix Jf, Zuo Yingnan, Li Hongjia, Liang Xinyuan, Chen Yaqing, Ren Jiangtao, Jian Wenhua, Zhong Changhao, Li Shiyue

机构信息

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Department of Pneumology and Critical Care Medicine and Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany.

出版信息

Ther Adv Chronic Dis. 2023 Aug 23;14:20406223231181495. doi: 10.1177/20406223231181495. eCollection 2023.

Abstract

BACKGROUND

Artificial intelligence (AI) technology has been used for finding lesions gastrointestinal endoscopy. However, there were few AI-associated studies that discuss bronchoscopy.

OBJECTIVES

To use convolutional neural network (CNN) to recognize the observed anatomical positions of the airway under bronchoscopy.

DESIGN

We designed the study by comparing the imaging data of patients undergoing bronchoscopy from March 2022 to October 2022 by using EfficientNet (one of the CNNs) and U-Net.

METHODS

Based on the inclusion and exclusion criteria, 1527 clear images of normal anatomical positions of the airways from 200 patients were used for training, and 475 clear images from 72 patients were utilized for validation. Further, 20 bronchoscopic videos of examination procedures in another 20 patients with normal airway structures were used to extract the bronchoscopic images of normal anatomical positions to evaluate the accuracy for the model. Finally, 21 respiratory doctors were enrolled for the test of recognizing corrected anatomical positions using the validating datasets.

RESULTS

In all, 1527 bronchoscopic images of 200 patients with nine anatomical positions of the airway, including carina, right main bronchus, right upper lobe bronchus, right intermediate bronchus, right middle lobe bronchus, right lower lobe bronchus, left main bronchus, left upper lobe bronchus, and left lower lobe bronchus, were used for supervised machine learning and training, and 475 clear bronchoscopic images of 72 patients were used for validation. The mean accuracy of recognizing these 9 positions was 91% (carina: 98%, right main bronchus: 98%, right intermediate bronchus: 90%, right upper lobe bronchus: 91%, right middle lobe bronchus 92%, right lower lobe bronchus: 83%, left main bronchus: 89%, left upper bronchus: 91%, left lower bronchus: 76%). The area under the curves for these nine positions were >0.98. In addition, the accuracy of extracting the images the video by the trained model was 94.7%. We also conducted a deep learning study to segment 10 segment bronchi in right lung, and 8 segment bronchi in Left lung. Because of the problem of radial depth, only segment bronchi distributions below right upper bronchus and right middle bronchus could be correctly recognized. The accuracy of recognizing was 84.33 ± 7.52% by doctors receiving interventional pulmonology education in our hospital over 6 months.

CONCLUSION

Our study proved that AI technology can be used to distinguish the normal anatomical positions of the airway, and the model we trained could extract the corrected images the video to help standardize data collection and control quality.

摘要

背景

人工智能(AI)技术已用于在胃肠内镜检查中发现病变。然而,很少有与AI相关的研究讨论支气管镜检查。

目的

使用卷积神经网络(CNN)识别支气管镜检查下气道的观察解剖位置。

设计

我们通过使用EfficientNet(一种CNN)和U-Net比较2022年3月至2022年10月接受支气管镜检查患者的影像数据来设计本研究。

方法

根据纳入和排除标准,使用来自200例患者的1527张气道正常解剖位置的清晰图像进行训练,72例患者的475张清晰图像用于验证。此外,使用另外20例气道结构正常患者的20个支气管镜检查视频来提取正常解剖位置的支气管镜图像,以评估模型的准确性。最后,招募21名呼吸科医生使用验证数据集对正确的解剖位置进行识别测试。

结果

总共使用了200例患者的1527张支气管镜图像,这些图像包含气道的九个解剖位置,包括隆突、右主支气管、右上叶支气管、右中间支气管、右中叶支气管、右下叶支气管、左主支气管、左上叶支气管和左下叶支气管,用于监督机器学习和训练,72例患者的475张清晰支气管镜图像用于验证。识别这9个位置的平均准确率为91%(隆突:98%,右主支气管:98%,右中间支气管:90%,右上叶支气管:91%,右中叶支气管:92%,右下叶支气管:83%,左主支气管:89%,左上支气管:91%,左下支气管:76%)。这九个位置的曲线下面积>0.98。此外,训练模型从视频中提取图像的准确率为94.7%。我们还进行了一项深度学习研究,对右肺的10个肺段支气管和左肺的8个肺段支气管进行分割。由于径向深度问题,只有右上支气管和右中支气管下方的肺段支气管分布能够被正确识别。我院接受介入肺科教育6个月以上的医生识别的准确率为84.33±7.52%。

结论

我们的研究证明AI技术可用于区分气道的正常解剖位置,我们训练的模型可以从视频中提取正确的图像,以帮助规范数据收集和控制质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68be/10457519/6082c685c2da/10.1177_20406223231181495-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验