Suppr超能文献

利用光学相干断层扫描(OCT)数据增强卡尔曼滤波机器学习模型以预测未来视野缺损:来自非洲裔青光眼评估研究和青光眼诊断创新研究数据的分析

Augmenting Kalman Filter Machine Learning Models with Data from OCT to Predict Future Visual Field Loss: An Analysis Using Data from the African Descent and Glaucoma Evaluation Study and the Diagnostic Innovation in Glaucoma Study.

作者信息

Zhalechian Mohammad, Van Oyen Mark P, Lavieri Mariel S, De Moraes Carlos Gustavo, Girkin Christopher A, Fazio Massimo A, Weinreb Robert N, Bowd Christopher, Liebmann Jeffrey M, Zangwill Linda M, Andrews Christopher A, Stein Joshua D

机构信息

Department of Industrial and Operations Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan.

Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, New York, New York.

出版信息

Ophthalmol Sci. 2021 Dec 21;2(1):100097. doi: 10.1016/j.xops.2021.100097. eCollection 2022 Mar.

Abstract

PURPOSE

To assess whether the predictive accuracy of machine learning algorithms using Kalman filtering for forecasting future values of global indices on perimetry can be enhanced by adding global retinal nerve fiber layer (RNFL) data and whether model performance is influenced by the racial composition of the training and testing sets.

DESIGN

Retrospective, longitudinal cohort study.

PARTICIPANTS

Patients with open-angle glaucoma (OAG) or glaucoma suspects enrolled in the African Descent and Glaucoma Evaluation Study or Diagnostic Innovation in Glaucoma Study.

METHODS

We developed a Kalman filter (KF) with tonometry and perimetry data (KF-TP) and another KF with tonometry, perimetry, and global RNFL data (KF-TPO), comparing these models with one another and with 2 linear regression (LR) models for predicting mean deviation (MD) and pattern standard deviation values 36 months into the future for patients with OAG and glaucoma suspects. We also compared KF model performance when trained on individuals of European and African descent and tested on patients of the same versus the other race.

MAIN OUTCOME MEASURES

Predictive accuracy (percentage of MD values forecasted within the 95% repeatability interval) differences among the models.

RESULTS

Among 362 eligible patients, the mean ± standard deviation age at baseline was 71.3 ± 10.4 years; 196 patients (54.1%) were women; 202 patients (55.8%) were of European descent, and 139 (38.4%) were of African descent. Among patients with OAG (n = 296), the predictive accuracy for 36 months in the future was higher for the KF models (73.5% for KF-TP, 71.2% for KF-TPO) than for the LR models (57.5%, 58.0%). Predictive accuracy did not differ significantly between KF-TP and KF-TPO ( = 0.20). If the races of the training and testing set patients were aligned (versus nonaligned), the mean absolute prediction error of future MD improved 0.39 dB for KF-TP and 0.48 dB for KF-TPO.

CONCLUSIONS

Adding global RNFL data to existing KFs minimally improved their predictive accuracy. Although KFs attained better predictive accuracy when the races of the training and testing sets were aligned, these improvements were modest. These findings will help to guide implementation of KFs in clinical practice.

摘要

目的

评估使用卡尔曼滤波的机器学习算法预测视野检查中全局指数未来值的预测准确性是否可以通过添加全局视网膜神经纤维层(RNFL)数据来提高,以及模型性能是否受训练集和测试集的种族构成影响。

设计

回顾性纵向队列研究。

参与者

纳入非洲裔和青光眼评估研究或青光眼诊断创新研究的开角型青光眼(OAG)患者或青光眼疑似患者。

方法

我们开发了一个结合眼压测量和视野检查数据的卡尔曼滤波器(KF)(KF-TP)以及另一个结合眼压测量、视野检查和全局RNFL数据的KF(KF-TPO),将这些模型相互比较,并与2个线性回归(LR)模型比较,以预测OAG患者和青光眼疑似患者36个月后的平均偏差(MD)和模式标准偏差值。我们还比较了在欧洲裔和非洲裔个体上训练并在同一种族或另一种族患者上测试时KF模型的性能。

主要观察指标

各模型之间预测准确性(预测的MD值在95%可重复性区间内的百分比)的差异。

结果

在362例符合条件的患者中,基线时的平均年龄±标准差为71.3±10.4岁;196例患者(54.1%)为女性;202例患者(55.8%)为欧洲裔,139例(38.4%)为非洲裔。在OAG患者(n = 296)中,KF模型对未来36个月的预测准确性(KF-TP为73.5%,KF-TPO为71.2%)高于LR模型(57.5%,58.0%)。KF-TP和KF-TPO之间的预测准确性无显著差异(P = 0.20)。如果训练集和测试集患者的种族一致(相对于不一致),KF-TP对未来MD的平均绝对预测误差改善0.39 dB,KF-TPO改善0.48 dB。

结论

在现有的KF中添加全局RNFL数据对其预测准确性的提高微乎其微。尽管当训练集和测试集的种族一致时KF获得了更好的预测准确性,但这些改善并不显著。这些发现将有助于指导KF在临床实践中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e75f/9560647/87ce4cc25b83/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验