Suppr超能文献

基于过滤预测方法的不同目标眼内压水平下青光眼进展的个体化预测。

Personalized Prediction of Glaucoma Progression Under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods.

机构信息

Medical Practice Evaluation Center, Division of General Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts.

Department of Industrial and Operations Engineering, University of Michigan School of Engineering, Ann Arbor, Michigan.

出版信息

Ophthalmology. 2018 Apr;125(4):569-577. doi: 10.1016/j.ophtha.2017.10.033. Epub 2017 Dec 2.

Abstract

PURPOSE

To generate personalized forecasts of how patients with open-angle glaucoma (OAG) experience disease progression at different intraocular pressure (IOP) levels to aid clinicians with setting personalized target IOPs.

DESIGN

Secondary analyses using longitudinal data from 2 randomized controlled trials.

PARTICIPANTS

Participants with moderate or advanced OAG from the Collaborative Initial Glaucoma Treatment Study (CIGTS) or the Advanced Glaucoma Intervention Study (AGIS).

METHODS

By using perimetric and tonometric data from trial participants, we developed and validated Kalman Filter (KF) models for fast-, slow-, and nonprogressing patients with OAG. The KF can generate personalized and dynamically updated forecasts of OAG progression under different target IOP levels. For each participant, we determined how mean deviation (MD) would change if the patient maintains his/her IOP at 1 of 7 levels (6, 9, 12, 15, 18, 21, or 24 mmHg) over the next 5 years. We also model and predict changes to MD over the same time horizon if IOP is increased or decreased by 3, 6, and 9 mmHg from the level attained in the trials.

MAIN OUTCOME MEASURES

Personalized estimates of the change in MD under different target IOP levels.

RESULTS

A total of 571 participants (mean age, 64.2 years; standard deviation, 10.9) were followed for a mean of 6.5 years (standard deviation, 2.8). Our models predicted that, on average, fast progressors would lose 2.1, 6.7, and 11.2 decibels (dB) MD under target IOPs of 6, 15, and 24 mmHg, respectively, over 5 years. In contrast, on average, slow progressors would lose 0.8, 2.1, and 4.1 dB MD under the same target IOPs and time frame. When using our tool to quantify the OAG progression dynamics for all 571 patients, we found no statistically significant differences over 5 years between progression for black versus white, male versus female, and CIGTS versus AGIS participants under different target IOPs (P > 0.05 for all).

CONCLUSIONS

To our knowledge, this is the first clinical decision-making tool that generates personalized forecasts of the trajectory of OAG progression at different target IOP levels. This approach can help clinicians determine appropriate, personalized target IOPs for patients with OAG.

摘要

目的

生成针对开角型青光眼(OAG)患者在不同眼内压(IOP)水平下疾病进展的个性化预测,以帮助临床医生设定个性化的目标 IOP。

设计

使用来自 2 项随机对照试验的纵向数据进行的二次分析。

参与者

来自协作性初始青光眼治疗研究(CIGTS)或高级青光眼干预研究(AGIS)的中重度或晚期 OAG 患者。

方法

通过使用试验参与者的视野计和眼压计数据,我们为快速、缓慢和非进展性 OAG 患者开发并验证了卡尔曼滤波器(KF)模型。KF 可以生成不同目标 IOP 水平下 OAG 进展的个性化和动态更新预测。对于每个参与者,如果患者在接下来的 5 年内将其 IOP 维持在 7 个水平(6、9、12、15、18、21 或 24mmHg)中的 1 个水平,我们确定平均偏差(MD)将如何变化。我们还模拟并预测如果 IOP 从试验中达到的水平升高或降低 3、6 和 9mmHg,MD 在相同时间范围内的变化。

主要观察指标

不同目标 IOP 水平下 MD 变化的个性化估计值。

结果

共纳入 571 名参与者(平均年龄 64.2 岁,标准差 10.9),平均随访 6.5 年(标准差 2.8)。我们的模型预测,平均而言,快速进展者在 5 年内,目标 IOP 分别为 6、15 和 24mmHg 时,MD 将分别损失 2.1、6.7 和 11.2 分贝(dB)。相比之下,平均而言,缓慢进展者在相同的目标 IOP 和时间框架下,MD 将分别损失 0.8、2.1 和 4.1dB。当我们使用该工具对 571 名患者的所有患者的 OAG 进展动态进行量化时,我们发现在 5 年内,不同目标 IOP 下,黑人和白人、男性和女性、CIGTS 和 AGIS 参与者之间的进展无统计学差异(所有 P > 0.05)。

结论

据我们所知,这是第一个生成不同目标 IOP 水平下 OAG 进展轨迹个性化预测的临床决策工具。这种方法可以帮助临床医生为 OAG 患者确定适当的个性化目标 IOP。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验