Alcañiz Patricia, Vivo de Catarina César, Gutiérrez Alessandro, Pérez Jesús, Illana Carlos, Pinar Beatriz, Otaduy Miguel A
Computer science department, Universidad Rey Juan Carlos, Madrid, Spain.
GMV Innovating Solutions, Madrid, Spain.
Front Bioeng Biotechnol. 2022 Sep 28;10:976328. doi: 10.3389/fbioe.2022.976328. eCollection 2022.
Computational preoperative planning offers the opportunity to reduce surgery time and patient risk. However, on soft tissues such as the breast, deviations between the preoperative and intraoperative settings largely limit the applicability of preoperative planning. In this work, we propose a high-performance accurate simulation model of the breast, to fuse preoperative information with the intraoperative deformation setting. Our simulation method encompasses three major elements: high-quality finite-element modeling (FEM), efficient handling of anatomical couplings for high-performance computation, and personalized parameter estimation from surface scans. We show the applicability of our method on two problems: 1) transforming high-quality preoperative scans to the intraoperative setting for fusion of preoperative planning data, and 2) real-time tracking of breast tumors for navigation during intraoperative radiotherapy. We have validated our methodology on a test cohort of nine patients who underwent tumor resection surgery and intraoperative radiotherapy, and we have quantitatively compared simulation results to intraoperative scans. The accuracy of our simulation results suggest clinical viability of the proposed methodology.
术前计算机规划为减少手术时间和降低患者风险提供了契机。然而,对于乳房等软组织,术前和术中设置之间的偏差在很大程度上限制了术前规划的适用性。在这项工作中,我们提出了一种高性能的乳房精确模拟模型,将术前信息与术中变形设置相融合。我们的模拟方法包含三个主要要素:高质量的有限元建模(FEM)、用于高性能计算的解剖耦合的高效处理以及从表面扫描进行个性化参数估计。我们展示了我们的方法在两个问题上的适用性:1)将高质量的术前扫描转换为术中设置以融合术前规划数据,以及2)在术中放疗期间对乳腺肿瘤进行实时跟踪以用于导航。我们在一组接受肿瘤切除手术和术中放疗的9名患者的测试队列上验证了我们的方法,并将模拟结果与术中扫描进行了定量比较。我们模拟结果的准确性表明了所提出方法的临床可行性。