Suppr超能文献

用于术中导航和术前规划融合的乳房软组织模拟

Soft-tissue simulation of the breast for intraoperative navigation and fusion of preoperative planning.

作者信息

Alcañiz Patricia, Vivo de Catarina César, Gutiérrez Alessandro, Pérez Jesús, Illana Carlos, Pinar Beatriz, Otaduy Miguel A

机构信息

Computer science department, Universidad Rey Juan Carlos, Madrid, Spain.

GMV Innovating Solutions, Madrid, Spain.

出版信息

Front Bioeng Biotechnol. 2022 Sep 28;10:976328. doi: 10.3389/fbioe.2022.976328. eCollection 2022.

Abstract

Computational preoperative planning offers the opportunity to reduce surgery time and patient risk. However, on soft tissues such as the breast, deviations between the preoperative and intraoperative settings largely limit the applicability of preoperative planning. In this work, we propose a high-performance accurate simulation model of the breast, to fuse preoperative information with the intraoperative deformation setting. Our simulation method encompasses three major elements: high-quality finite-element modeling (FEM), efficient handling of anatomical couplings for high-performance computation, and personalized parameter estimation from surface scans. We show the applicability of our method on two problems: 1) transforming high-quality preoperative scans to the intraoperative setting for fusion of preoperative planning data, and 2) real-time tracking of breast tumors for navigation during intraoperative radiotherapy. We have validated our methodology on a test cohort of nine patients who underwent tumor resection surgery and intraoperative radiotherapy, and we have quantitatively compared simulation results to intraoperative scans. The accuracy of our simulation results suggest clinical viability of the proposed methodology.

摘要

术前计算机规划为减少手术时间和降低患者风险提供了契机。然而,对于乳房等软组织,术前和术中设置之间的偏差在很大程度上限制了术前规划的适用性。在这项工作中,我们提出了一种高性能的乳房精确模拟模型,将术前信息与术中变形设置相融合。我们的模拟方法包含三个主要要素:高质量的有限元建模(FEM)、用于高性能计算的解剖耦合的高效处理以及从表面扫描进行个性化参数估计。我们展示了我们的方法在两个问题上的适用性:1)将高质量的术前扫描转换为术中设置以融合术前规划数据,以及2)在术中放疗期间对乳腺肿瘤进行实时跟踪以用于导航。我们在一组接受肿瘤切除手术和术中放疗的9名患者的测试队列上验证了我们的方法,并将模拟结果与术中扫描进行了定量比较。我们模拟结果的准确性表明了所提出方法的临床可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f869/9554225/4bc6f6bb25f8/fbioe-10-976328-g001.jpg

相似文献

1
Soft-tissue simulation of the breast for intraoperative navigation and fusion of preoperative planning.
Front Bioeng Biotechnol. 2022 Sep 28;10:976328. doi: 10.3389/fbioe.2022.976328. eCollection 2022.
2
Soft-Tissue Simulation for Computational Planning of Orthognathic Surgery.
J Pers Med. 2021 Sep 29;11(10):982. doi: 10.3390/jpm11100982.
3
Intraoperative Computed Tomography and Finite Element Modelling for Multimodal Image Fusion in Brain Surgery.
Oper Neurosurg (Hagerstown). 2020 May 1;18(5):531-541. doi: 10.1093/ons/opz196.
4
5
Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.
Technol Health Care. 2018;26(S1):317-325. doi: 10.3233/THC-174640.
6
Physics-based shape matching for intraoperative image guidance.
Med Phys. 2014 Nov;41(11):111901. doi: 10.1118/1.4896021.
7
Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
Int J Comput Assist Radiol Surg. 2015 Nov;10(11):1753-64. doi: 10.1007/s11548-015-1216-z. Epub 2015 May 10.
10
Fast computation of soft tissue thermal response under deformation based on fast explicit dynamics finite element algorithm for surgical simulation.
Comput Methods Programs Biomed. 2020 Apr;187:105244. doi: 10.1016/j.cmpb.2019.105244. Epub 2019 Nov 27.

本文引用的文献

1
Soft-Tissue Simulation for Computational Planning of Orthognathic Surgery.
J Pers Med. 2021 Sep 29;11(10):982. doi: 10.3390/jpm11100982.
2
Uncertainty quantification in subject-specific estimation of local vessel mechanical properties.
Int J Numer Method Biomed Eng. 2021 Dec;37(12):e3535. doi: 10.1002/cnm.3535. Epub 2021 Nov 8.
4
Simulation of hyperelastic materials in real-time using deep learning.
Med Image Anal. 2020 Jan;59:101569. doi: 10.1016/j.media.2019.101569. Epub 2019 Oct 2.
5
A biomechanical breast model evaluated with respect to MRI data collected in three different positions.
Clin Biomech (Bristol). 2018 Dec;60:191-199. doi: 10.1016/j.clinbiomech.2018.10.020. Epub 2018 Oct 17.
6
Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation.
Int J Numer Method Biomed Eng. 2018 May;34(5):e2958. doi: 10.1002/cnm.2958. Epub 2018 Feb 28.
7
Real-Time Error Control for Surgical Simulation.
IEEE Trans Biomed Eng. 2018 Mar;65(3):596-607. doi: 10.1109/TBME.2017.2695587. Epub 2017 May 23.
8
Navigated Breast Tumor Excision Using Electromagnetically Tracked Ultrasound and Surgical Instruments.
IEEE Trans Biomed Eng. 2016 Mar;63(3):600-6. doi: 10.1109/TBME.2015.2466591. Epub 2015 Aug 20.
9
Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme.
Biomech Model Mechanobiol. 2015 Jun;14(3):489-513. doi: 10.1007/s10237-014-0618-0. Epub 2014 Sep 23.
10
Fusion imaging for intra-operative ultrasound-based navigation in neurosurgery.
J Ultrasound. 2014 Jun 24;17(3):243-51. doi: 10.1007/s40477-014-0111-8. eCollection 2014 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验