Suppr超能文献

通过实时网格自适应控制目标运动误差:在深部脑刺激中的应用

Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation.

作者信息

Bui Huu Phuoc, Tomar Satyendra, Courtecuisse Hadrien, Audette Michel, Cotin Stéphane, Bordas Stéphane P A

机构信息

Institute of Computational Engineering, University of Luxembourg, Faculty of Sciences Communication and Technology, Luxembourg.

University of Strasbourg, CNRS, ICube, Strasbourg, France.

出版信息

Int J Numer Method Biomed Eng. 2018 May;34(5):e2958. doi: 10.1002/cnm.2958. Epub 2018 Feb 28.

Abstract

An error-controlled mesh refinement procedure for needle insertion simulations is presented. As an example, the procedure is applied for simulations of electrode implantation for deep brain stimulation. We take into account the brain shift phenomena occurring when a craniotomy is performed. We observe that the error in the computation of the displacement and stress fields is localised around the needle tip and the needle shaft during needle insertion simulation. By suitably and adaptively refining the mesh in this region, our approach enables to control, and thus to reduce, the error whilst maintaining a coarser mesh in other parts of the domain. Through academic and practical examples we demonstrate that our adaptive approach, as compared with a uniform coarse mesh, increases the accuracy of the displacement and stress fields around the needle shaft and, while for a given accuracy, saves computational time with respect to a uniform finer mesh. This facilitates real-time simulations. The proposed methodology has direct implications in increasing the accuracy, and controlling the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anaesthesia, or cryotherapy. Moreover, the proposed approach can be helpful in the development of robotic surgeries because the simulation taking place in the control loop of a robot needs to be accurate, and to occur in real time.

摘要

本文提出了一种用于针插入模拟的误差控制网格细化程序。作为示例,该程序应用于深部脑刺激电极植入的模拟。我们考虑了开颅手术时发生的脑移位现象。我们观察到,在针插入模拟过程中,位移和应力场计算中的误差集中在针尖和针杆周围。通过在该区域适当地、自适应地细化网格,我们的方法能够控制并因此减少误差,同时在域的其他部分保持较粗的网格。通过理论和实际示例,我们证明,与均匀粗网格相比,我们的自适应方法提高了针杆周围位移和应力场的精度,并且在给定精度的情况下,相对于均匀细网格节省了计算时间。这有利于实时模拟。所提出的方法对于提高诸如活检、近距离放射治疗、区域麻醉或冷冻治疗等经皮手术模拟的精度以及控制计算成本具有直接影响。此外,所提出的方法有助于机器人手术的发展,因为在机器人控制回路中进行的模拟需要准确且实时进行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验