Suppr超能文献

2015年至2019年大连市中心医院血培养中病原菌分布及耐药性的临床分析

Clinical analysis of distribution and drug resistance of pathogenic bacteria in blood culture of Dalian Municipal Central Hospital from 2015 to 2019.

作者信息

Gao Jinghua, Song Jing

机构信息

Jinghua Gao, Department of Clinical Laboratory, Dalian University Affiliated Xinhua Hospital, Dalian 116021, Liaoning, China.

Jing Song Department of Clinical Laboratory, Dalian Municipal Central Hospital, Dalian 116033, Liaoning, China.

出版信息

Pak J Med Sci. 2022 Sep-Oct;38(7):1931-1937. doi: 10.12669/pjms.38.7.5377.

Abstract

OBJECTIVES

To analyze the distribution of common pathogenic bacteria and pattern of drug resistance in the blood culture of inpatients.

METHODS

This was a descriptive study. Blood culture data of inpatients of Dalian Municipal Central Hospital from January 2017 to December 2020 were collected from microbiology laboratory for retrospective analysis.

RESULTS

A total of 24,786 specimens were submitted for examination from inpatients from 2015 to 2019, and 2131 strains of clinically non-repetitive pathogenic bacteria were identified. There were 1135 G-positive cocci (53.26%), including 248 strains of (21.85%) and 68 strains of (5.99%). Other G-positive cocci 8 strains (0.70%). G-positive cocci were most sensitive to datomycin, linezolid and vancomycin. There were 923 G-negative bacilli (43.31%), including 476 strains (51.57%) of , 244 strains (26.44%) of and 130 strains (14.08%) of . G-negative bacilli were most sensitive to amikacin. Most of the blood specimens were obtained from the ICU patients (42.98%) followed by nephrology (8.68%) and respiratory medicine (7.32%).

CONCLUSION

G-positive bacteria were mainly detected in the positive blood culture samples of inpatients in this hospital. Daptomycin, linezolid and vancomycin were preferred for G-positive cocci, while amikacin was highly sensitive to G-negative bacilli.

摘要

目的

分析住院患者血培养中常见病原菌的分布及耐药模式。

方法

本研究为描述性研究。收集大连市中心医院2017年1月至2020年12月住院患者的血培养数据,从微生物实验室进行回顾性分析。

结果

2015年至2019年共送检住院患者标本24786份,鉴定出2131株临床非重复病原菌。革兰阳性球菌1135株(53.26%),其中金黄色葡萄球菌248株(21.85%),凝固酶阴性葡萄球菌68株(5.99%)。其他革兰阳性球菌8株(0.70%)。革兰阳性球菌对达托霉素、利奈唑胺和万古霉素最敏感。革兰阴性杆菌923株(43.31%),其中大肠埃希菌476株(51.57%),肺炎克雷伯菌244株(26.44%),铜绿假单胞菌130株(14.08%)。革兰阴性杆菌对阿米卡星最敏感。大部分血标本来自ICU患者(42.98%),其次是肾病科(8.68%)和呼吸内科(7.32%)。

结论

该院住院患者血培养阳性标本中主要检测到革兰阳性菌。革兰阳性球菌首选达托霉素、利奈唑胺和万古霉素,革兰阴性杆菌对阿米卡星高度敏感。

相似文献

2
[Analysis of the pathogenic characteristics of 162 severely burned patients with bloodstream infection].
Zhonghua Shao Shang Za Zhi. 2016 Sep 20;32(9):529-35. doi: 10.3760/cma.j.issn.1009-2587.2016.09.004.
3
[Microbiological profiles of pathogens causing nosocomial bacteremia in 2011, 2013 and 2016].
Sheng Wu Gong Cheng Xue Bao. 2018 Aug 25;34(8):1205-1217. doi: 10.13345/j.cjb.180192.
6
[Analysis of distribution and drug resistance of pathogens from the wounds of 1 310 thermal burn patients].
Zhonghua Shao Shang Za Zhi. 2018 Nov 20;34(11):802-808. doi: 10.3760/cma.j.issn.1009-2587.2018.11.016.
7
Analysis of the Distribution and Antibiotic Resistance of Pathogens Causing Infections in Hospitals from 2017 to 2019.
Evid Based Complement Alternat Med. 2022 Sep 16;2022:3512582. doi: 10.1155/2022/3512582. eCollection 2022.

引用本文的文献

本文引用的文献

2
Overview of Changes to the Clinical and Laboratory Standards Institute M100, 31st Edition.
J Clin Microbiol. 2021 Nov 18;59(12):e0021321. doi: 10.1128/JCM.00213-21. Epub 2021 Sep 22.
5
Antimicrobial Resistance.
Gastrointest Endosc Clin N Am. 2020 Oct;30(4):619-635. doi: 10.1016/j.giec.2020.06.004. Epub 2020 Aug 1.
8
Bloodstream infections - Standard and progress in pathogen diagnostics.
Clin Microbiol Infect. 2020 Feb;26(2):142-150. doi: 10.1016/j.cmi.2019.11.017. Epub 2019 Nov 22.
9
Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogens.
Clin Microbiol Infect. 2020 Feb;26(2):151-157. doi: 10.1016/j.cmi.2019.10.031. Epub 2019 Nov 9.
10
[Analysis on distribution and drug resistance of pathogen caused community-onset bloodstream infection].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019 Jan;31(1):67-72. doi: 10.3760/cma.j.issn.2095-4352.2019.01.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验