Farkoosh Amir R, Dunand David C, Seidman David N
Department of Materials Science and Engineering Northwestern University, Evanston, IL 60208-3108, USA.
Northwestern University Center for Atom-Probe Tomography (NUCAPT), Northwestern University, Evanston, IL 60208-3108, USA.
Acta Mater. 2022 Nov;240. doi: 10.1016/j.actamat.2022.118344. Epub 2022 Sep 9.
Precipitation-strengthening at ambient and high temperatures is examined in (at.%) alloys with and without 0.02 at.% Sn micro-additions. Isochronal aging experiments reveal that Sn inoculation results in a pronounced age-hardening response: a hardening increment of 125 MPa is achieved at peak-aging (475 °C), which is five times greater than that of a Sn-free alloy. Scanning electron microscopy and synchrotron x-ray diffraction analyses demonstrate that, while the structure of the -Al(Mn,Fe)Si precipitates formed in the peak-aged alloys is identical, their mean radius is smaller (R ~ 25 vs. 100-500 nm) and their number density is greater (~10 vs. ~10 ) in the Sn-modified alloy. Atom-probe tomography analyses reveal that the enhanced dispersion of the -precipitates is related primarily to the formation of Sn-rich nanoprecipitates at intermediate temperatures, which act as nucleation sites for Mn-Si-rich nanoprecipitates. High-resolution transmission electron microscopy analyses demonstrate that these Mn-Si-rich nanoprecipitates exhibit icosahedral quasicrystal ordering (I-phase), which transform into the cubic-approximant -phase upon peak aging. Significant Sn segregation at the semi-coherent interfaces of the -precipitates in the peak-aged Sn-modified alloy is observed via APT, which promotes homogeneous nucleation of the I/-precipitates at aging temperatures > 400 °C. At 300 °C, creep threshold stresses are observed in both alloys in the peak-aged state, which increases from ~30 MPa in the Sn-free alloy to ~52 MPa in the Sn-modified alloy. This boost in creep resistance is consistent with the enhanced aging response (higher Orowan stress).
研究了添加和未添加0.02原子%锡微合金化的(原子%)合金在室温和高温下的析出强化。等温时效实验表明,锡孕育导致明显的时效硬化响应:在峰值时效(475°C)时,硬化增量达到125MPa,是无锡合金的五倍。扫描电子显微镜和同步辐射X射线衍射分析表明,虽然峰值时效合金中形成的-Al(Mn,Fe)Si析出相的结构相同,但在含锡改性合金中,它们的平均半径较小(R25nm对100 - 500nm),数量密度更大(10对10)。原子探针断层扫描分析表明,-析出相的增强弥散主要与中间温度下富锡纳米析出相的形成有关,这些富锡纳米析出相作为富锰硅纳米析出相的形核位点。高分辨率透射电子显微镜分析表明,这些富锰硅纳米析出相表现出二十面体准晶有序(I相),在峰值时效时转变为立方近似相。通过APT观察到峰值时效含锡改性合金中-析出相的半共格界面处有明显的锡偏析,这促进了时效温度>400°C时I/-析出相的均匀形核。在300°C时,两种合金在峰值时效状态下均观察到蠕变阈值应力,其从无锡合金中的30MPa增加到含锡改性合金中的~52MPa。这种抗蠕变能力的提高与增强的时效响应(更高的奥罗万应力)一致。