Suppr超能文献

基于 GRU 神经网络的考虑公交优先的公交车驶入变道决策模型。

A Lane-Changing Decision-Making Model of Bus Entering considering Bus Priority Based on GRU Neural Network.

机构信息

School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China.

出版信息

Comput Intell Neurosci. 2022 Sep 24;2022:4558946. doi: 10.1155/2022/4558946. eCollection 2022.

Abstract

A mandatory lane change occurs when buses are ready to enter the station, which will easily cause a reduction of urban road capacity and induce traffic congestion. Using deep learning methods to make lane-changing decisions has become one of the research hotspots in the field of public transportation, especially with the development of the Cooperative Vehicle-Infrastructure System. Aiming at the exploration of the bus lane-changing rules and decisions during entering, we built a GRU neural network model considering bus priority by using the first real-world V2X (vehicle to everything) dataset. Firstly, we illustrated the image and point cloud data processing by coordinate transformation. Secondly, the Kalman filtering algorithm was used to evaluate the vehicle state. Combined with the bus priority rules, we propose a flexible right-of-way lane in front of the bus stop. And then, we obtain the feature variables as inputs to the model. The XGBoost algorithm was chosen to train the GRU model. Results show that the model has higher identification accuracy for lane-changing maneuvers by comparison with other models. It plays a very important role in providing a decision basis for more refined bus operation management.

摘要

当公共汽车准备进入车站时,会发生强制性的变道,这很容易导致城市道路容量减少,并导致交通拥堵。使用深度学习方法来做出变道决策已成为公共交通领域的研究热点之一,特别是随着协同车路系统的发展。针对公共汽车在进入车站时的变道规则和决策进行探索,我们使用第一个真实的车对一切(V2X)数据集,构建了一个考虑公共汽车优先的门控循环单元(GRU)神经网络模型。首先,我们通过坐标变换说明图像和点云数据处理。其次,使用卡尔曼滤波算法评估车辆状态。结合公共汽车优先规则,我们在公共汽车站前提出了灵活的优先通行车道。然后,我们获得特征变量作为模型的输入。选择 XGBoost 算法来训练 GRU 模型。结果表明,与其他模型相比,该模型对变道操作具有更高的识别准确率。它在为更精细的公共汽车运营管理提供决策依据方面发挥了非常重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e5/9553447/1b4cbe85a05f/CIN2022-4558946.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验